Metal Interactions When Using Metalworking Fluids

6th International Metalworking Fluids Conference

John Burke CMFS, FSTLE

Introduction

Understanding the effect of various metals Understanding particle size concerns Corrective actions

During metal machining processes, very reactive metal ions are exposed to the coolant or cutting oil.

These metal ions are continuously released into the coolant as long as the chips remain in the system.

These reactive metal ions have a destabilizing effect on the cutting fluid.

Why Fluids Fail

Three Basic Water Reducible MRF Formulations

Emulsifiable Oil	Oil + Anionic Soap + Rust Preventative +
(Soluble Oil)	Coupling Agent + Biocide + Buffer

Semi-Synthetic	Oil + Synthetic Component + Anionic Soap + Coupling Agent + Rust Preventative + Buffer + Biocide

	Synthetic Component + Fatty Acid +
Synthetic	Anionic Wetting Agent + Rust Preventative
-	+ Buffer + Biocide

Typical Emulsified Oil MWF Schematic

Typical Emulsified Oil MWF Schematic On the Road to Failure

Typical Emulsified Oil MWF Schematic

It's All About Plusses and Minuses

One Group of Failures Mechanisms are Positively Charged Key Components of a MRF are Negatively Charged

When the two Groups come together MRF failure begins

Metal Basics

For example Aluminum Oxide

Metal Basics

Many anions to choose from in a coolant Availability determines observed failure

Cast Iron Grinding Experiment

Metal Failure Mechanisms

1. Type of metal being machined

Most Destructive:	Cast or Ductile Iron Certain Grades of Aluminum Magnesium	Fe ⁺⁺⁺ Al ⁺⁺⁺ Mg ⁺⁺
Mildly Destructive:	AISI/SAE 1020, 4140, 8620 Brass Lead Copper	
Least Destructive:	Stainless Steel Ultra-Alloys Such as Incoloy	
Key Words:	Type of metal being cut	

Metal Failure Mechanisms

The	Battle	of the	Cations

Κ	+
Na	÷
Ca	++
Pb	++
Zn	++
Mg	++
Nĭ	***
Fe	++
Fe	***
Α	***
Ti	****
	K Na Ca Pb Zn Mg Ni Fe Al Ti

• Typical cations found in metals being machined.

Metal Surface Reactivity vs. Time

Classic Logarithmic Decay

Particle Size Failure Mechanisms

2. Size and rate of metal being machined (in relation to volume of coolant)

Most Destructive:	Grinding, polishing, ball grinding
Mildly Destructive:	Sawing, CBN grinding, milling
Least Destructive:	Single point turning
Key Words:	Size and rate of chips cut; Volume of fluid surface area of metal removed / volume of fluid

Particle Size Failure Mechanisms

Machining generates a lot of surface area

Grind 1 square foot of steel into 50micron cubes

Filtration Example

- 15,000-gallon system
 - SAE 1015
 - Fine grinding of copper
 - 1,000 Total suspended solids
 - 210 mg/L < 8 micron
 - 168 mg/L < 0.45 micron
 - 120 mg/L < 0.2 micron
 - Over time dirt built up linearly while surface area of dirt built up exponentially.
 - Once coolant hit these dirt levels, failure occurred in 4 days.

Chip Surface Area

Depth of cut=0.005"Length of chip=1"Width of chip=1/16"

Chip Cutting vs. Grinding

Reducing a 1' x 1' x 1' cube into small particles

35,720 ft²Grinding5,208 ft²Chip Cutting

6.85 times more surface area from grinding Plus the heat energy = more rubbing in grinding

Chips Are Not All Alike

Different metal alloys form different chips

- Soft alloys tend to produce longer chips
- Longer chips have less surface area per pound of metal removed

Grinding can produce chips well below 1.0 micron in size

Aluminum Chips Minimal Surface Area

Aluminum Chips - More Surface Area

Total Surface Area is Very Large

The Closer the Magnification, the More Surface Area is Revealed

NV.

The Closer the Magnification, the More Surface Area is Revealed

Small Brass Chips - Maximum Surface Area

Fresh Cut Chips Left in Piles Continue to React

Time left to react. Weight or density of chips Several corrosion cell reactions take place

Piles of Chips

Piles of Chips

Other times you have to pull trench covers to see these chips

The Beginning of an Electrolytic Corrosion Cell

Electrolytic Cell Reaction

Chip on Chips or Swarf on Swarf

Crevice Corrosion and MWF Failure

Crevice Corrosion and MWF Failure

Crevice Corrosion and MWF Failure

Hexavalent Chromium Reaction

Raising Temperature of high chromium alloys above 675°C can create Cr (VI).

Confirmed by California South Coast Air Quality Management District in 2019.

Currently in rule making process as Proposed Rule 1435.

Half Life of Cr (VI) to Cr (III) is approximately 14 hours.

Quench Tanks (containing a metalworking fluid) is considered a point source.

Affects many heat treat operations in Southern California.

Stay tuned

The Corrosion Cell Increases With the Weight and Depth of the Chips

Increasing Corrosion

Increasing Depth

Chips actually welding together

Certain Metal Alloys Are More Reactive Than Other Alloys

Iron is more reactive than nickel

Mixing metals presents additional problems

Galvanic cell reactions

Therefore

Three primary metal failure reactions take place

- 1. Fresh metal ions exposed during machining
- 2. Metal ions released in piles of chips and swarf
- 3. Certain metals are more reactive than others

Metal Surface Reactivity vs. Time

Classic Logarithmic Decay

Metal Surface Reactivity vs. Time

Classic Logarithmic Decay

The Summary of the Metal Chip Failure Mechanisms

1. Small chips are more reactive than large chips

Single point turning vs. grinding

2. Certain metals are more reactive than other metals

Cast iron vs. stainless steel

3. Length of time the chips are in the system

Minutes to days

4. Chip density increases reaction rate

Densely packed chips can actually smolder

The Summary of the Metal Chip Failure Mechanisms

5. Volume of coolant to chip load

Too small of a sump worsens the effects of the reaction

6. Heat accelerates the reaction

Grinding puts in maximum energy, increasing reactivity, and generates small chips

7. System "turns" play a role in coolant stability Less turn rate = more issues

Corrective Actions

Get chips out of the coolant as fast as possible Filter fluids well Increase sump volume if possible Look for dead spots Change metal alloys (likely not possible) Don't mix metals

Recommended Textbook

Corrosion Engineering 3rd Edition

by Mars G. Fontana (Author)

Thank You!

