

Optimizing Next Generation Multi-Metal Wire Drawing Lubes

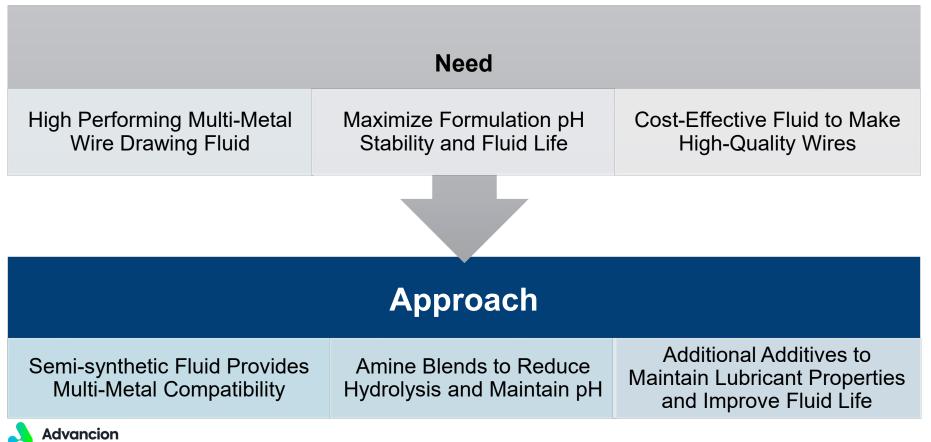
ILMA 6th International Metalworking Fluids Conference Atlanta Airport Marriott, Atlanta Georgia January 8-10, 2024

Kathleen Havelka, Ph.D., Denis Buffiere, Amelie Bretonnet, Andrew Schiffer

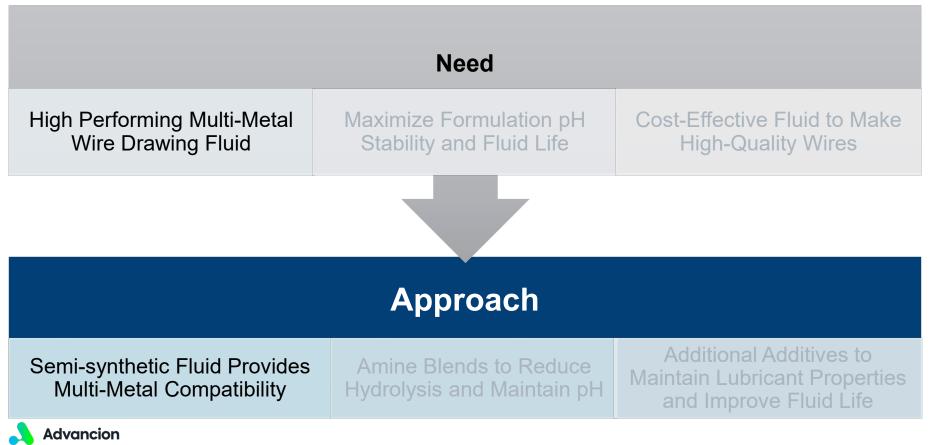
Introduction to Advancion

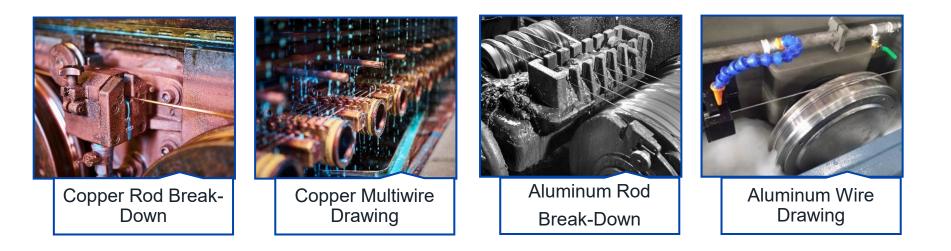
(Formerly ANGUS Chemical Company)

- Solutions-driven manufacturer of multifunctional additives, intermediates and solvents for a broad range of applications and markets
- Extensive track record of industry innovation and technical applications development
- Dual-source manufacturing for major product lines to ensure global supply security
- 6 Regional Customer Application Centers to address local customer needs
- Strong focus on **Responsible Care**[®] and product stewardship to support the emerging trends of tomorrow

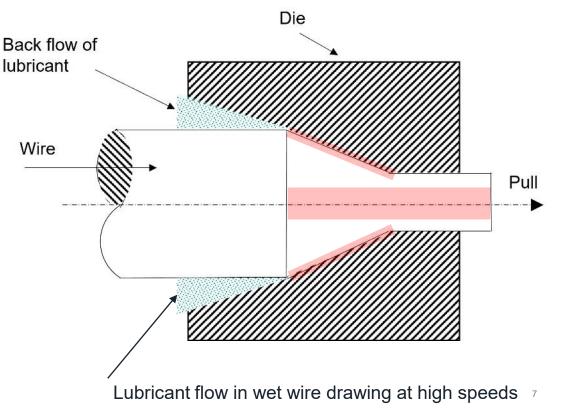


Innovations in Wire Drawing Fluids Improve Efficiency of Mobility




Optimizing Next Generation Multi-Metal Wire Drawing Fluid Development Strategy

Optimizing Next Generation Multi-Metal Wire Drawing Fluid Development Strategy

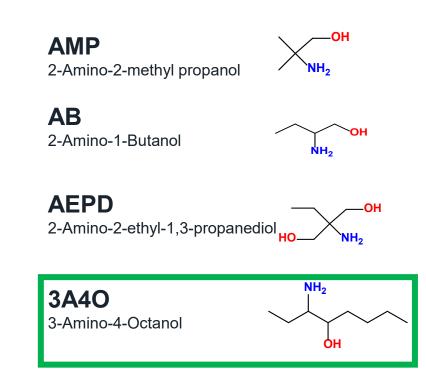

Wire Drawing Requires High-Quality Fluids to Meet Increasing Demand

Advances in Semi-Synthetic Wire Drawing Fluids Increase Efficiency in Copper and Aluminum Wire Drawing

- Growing demand for electric power generation, storage, and utilization are driving market growth
- Semi-synthetic WDFs are frequently used for copper wire drawing
- Neat oils are traditionally used for aluminum wire drawing, but new soluble oil WDFs show advantages
- Developing new semi-synthetic WDFs using esters and amines offer performance and environmental benefits

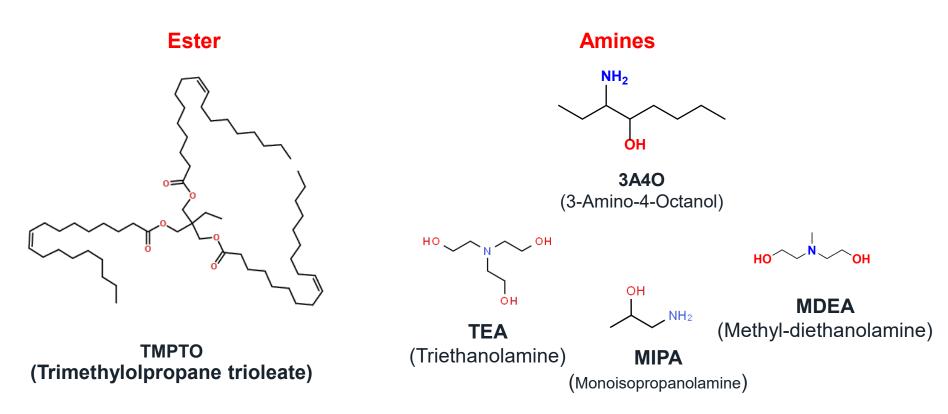
Lubricity Additive - Ester and Amine

Ingredients	Percent (%)
Mineral oil	50
Sodium Sulfonate	17
Emulsifier package	10
TMPTO Ester	15
Amine	3
Carboxylic Acid	0 - 2
Benzotriazole	0.3
Water	QSP
BIT 20%	1
Antifoam	0.05

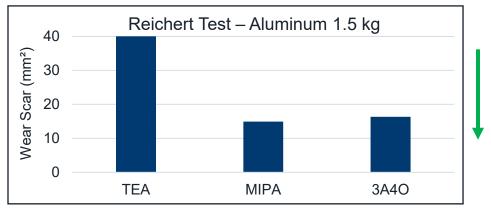


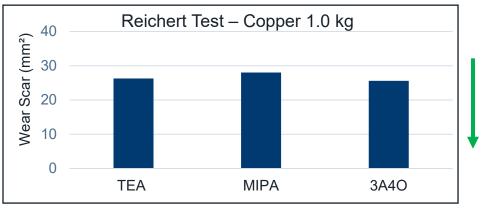
Semi-Synthetic Multi-Metal Formula

Provides multi-metal lubricant performance to increase efficiency of aluminum and copper wire drawing processes


Amino Alcohols With Diverse Composition and Structures Offer Multifunctionality

- 1° amino alcohols with varying alkyl groups
- Containing one or two alcohol groups
- Effective pH stabilizer
- Range from highly water soluble to water miscible
- Excellent multi-metal compatibility
- Improves lubricity
- Extends fluid life
- Enables formulation optimization




Lubricant Additive Structures Investigated

Lubrication Power

Excellent Lubrication Obtained

- Semi-synthetic formulations show strong multi-metal lubrication properties
- 3A4O and MIPA show excellent lubrication on aluminum
- All have excellent lubrication on copper

Multi-metal Compatibility

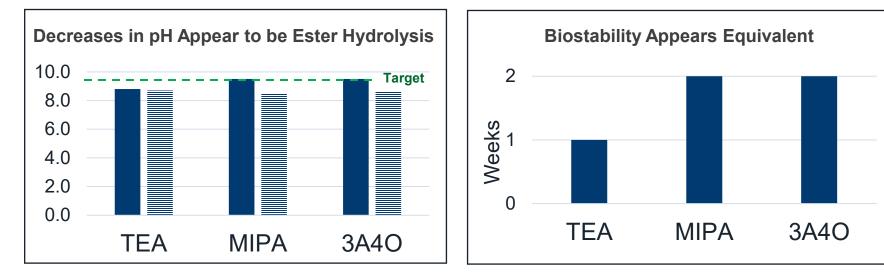
Alloys	TEA	MIPA	3A4O	
рН	8.8	9.5	9.5	
Aluminum				
Copper				

3A4O Shows Excellent Multi-Metal Compatibility

- 3A4O has the best performance on aluminum
- MIPA has the worst staining followed by TEA
- All have low copper staining

3A4O Shows Excellent Emulsion Stability with Copper Powder

	TEA	MIPA	3A4O
Initial Aspect			
After 3 weeks	14	AN A A A A A A A A A A A A A A A A A A	-18



Emulsion Stability with Copper Powder

- 3A4O and TEA show stability
- MIPA shows instability

pH Change and Biostability Results Do Not Show a Direct Correlation

- TMPTO with TEA does not reach target pH
- TMPTO with 3A4O and MIPA shows a pH drop
- The pH drop is more prevalent at higher pH and can be attributed to hydrolysis of ester
- All formulations show similar microbial growth in bio-resistance challenge test

Semi-Synthetic Formulations Show Promise in Multi-metal Wire Drawing

- 3A4O formulation is stable and shows strong lubricity and compatibility with copper and aluminum
- Semisynthetic wire drawing fluids formulated with ester and amine show desired performance for multi-metal wire drawing
- 3A4O offered excellent aluminum and copper lubricity and corrosion control, and emulsion stability
- TEA offered good copper lubricity but did not have good aluminum lubricity
- MIPA showed formulation instability
- Biostability is an area to improve, and it is most likely due to ester hydrolysis

Chemical and Physical Properties of Ester Impact Hydrolysis

Attribute	ТМРТО (С18)	TMP Ester (C8-C10)	Polymer Ester	
Structure	TMP ester hindered unsaturated C18	TMP ester hindered saturated C8-10	Complex ester hindered and branched	
Acid value	2.0	0.0	0.2	
Water	0.1	0.0	0.0	
KV @ 40C	46 cSt	20 cSt	340 cSt	
Molecular weight	981.6	580.4	2000	

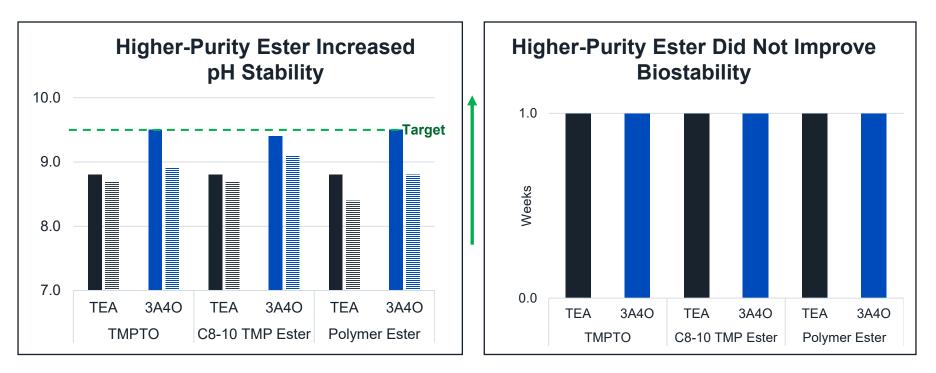
• Lower acid value esters to improve hydrolytic, pH, and biostability

Higher Purity Esters Improve Hydrolytic Stability

Impact of Ester Properties Ester Tested

- Polymer Ester
- C8-C10 TMP Ester

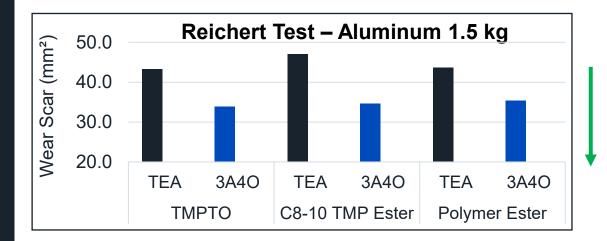
Amines Tested

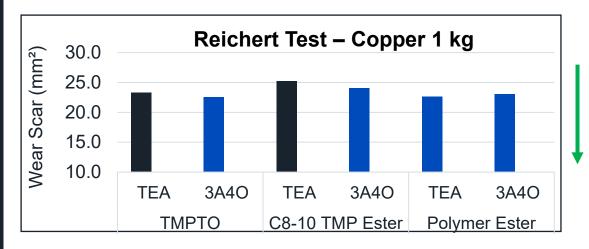

- TEA
- 3A4O

Target pH of 9.5

Ingredients	Percent (%)
Mineral oil	50
Sodium sulfonate	17
Emulsifier package	10
Esters	10 - 15
Amine	3
Carboxylic acid	0 - 2
Benzotriazole	0.3
Water	QSP
BIT 20%	1
Antifoam	0.05

Higher-Purity Ester Improved pH Stability but Did Not Increase Biostability





3A4O Shows Excellent Multi-metal Lubrication

- All esters show similar lubricity
- 3A4O has better Al lubricity than TEA
- Both have Cu lubricity
- 3A4O has excellent overall multi-metal lubricity

	ТМ	РТО	C8-C10 TMP Ester		Polymer Ester	
Alloys	TEA	3A4O	TEA	3A4O	TEA	3A4O
рН	8.8	9.5	8.8	9.4	8.8	9.5
Aluminum						
Copper						

3A4O Shows Excellent Multi-Metal Compatibility

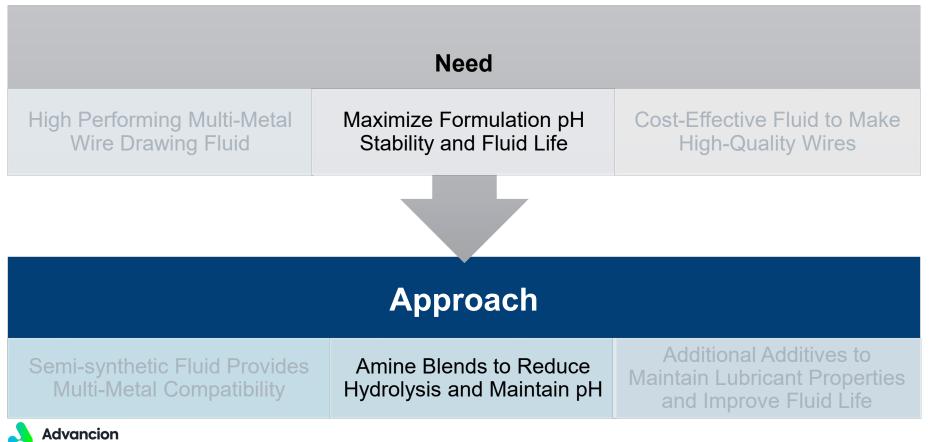
- Esters show similar multimetal compatibility
- 3A4O offers better protection than TEA on aluminum
- 3A4O and TEA show good compatibility on copper

High-Purity Esters Improve pH Stability But Do Not Improve Biostability

Ester Quality

- Higher-purity TMP ester improved pH stability
- No impact observed on biostability

Ester Structure


- High purity TMP ester showed better hydrolytic stability than polymer ester
- TMP and polymer esters show good lubrication, corrosion control and formulation stability
- No impact observed on biostability

Amine and Ester Properties

- 3A4O showed excellent multi-metal performance
- TEA did not have good aluminum compatibility
- 3A4O and TEA formulations had good pH stability with higher-quality esters
- Biostability still not meeting expectations

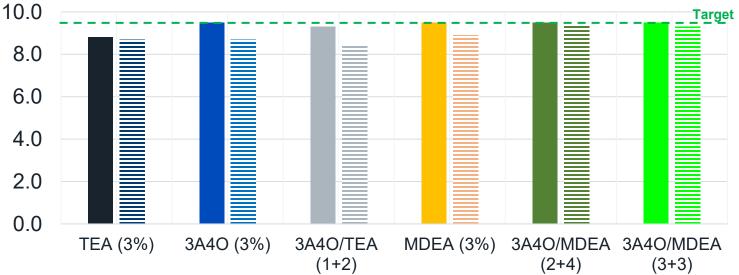
Optimizing Next Generation Multi-Metal Wire Drawing Fluid Development Strategy

Amine Blends Scavenge Acid of Low Purity Ester

ESTER TESTED

• TMPTO

AMINES TESTED


- 3A4O
- TEA
- MDEA

TARGET PH OF 9.5

Formulation with Amine Blends to Improve Fluid Life of Low Purity Ester

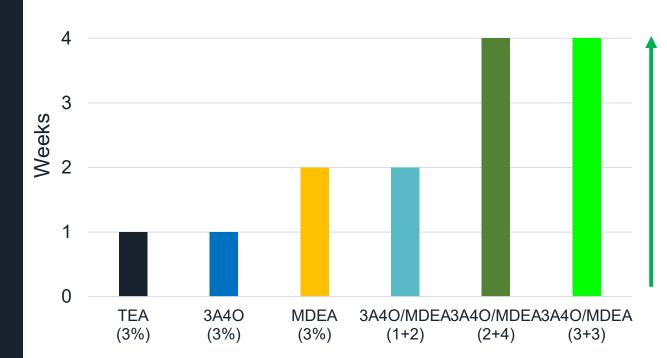
Ingredients	Weight %
Mineral oil	50
Sodium Sulfonate	17
Emulsifier package	4 - 6
TMPTO Ester	15
Amine(s)	3 - 6
Carboxylic Acid	0 - 3
Benzotriazole	0.3
Water	QSP
BIT 20%	1
Anti oxidant	0.4
Antifoam	0.05

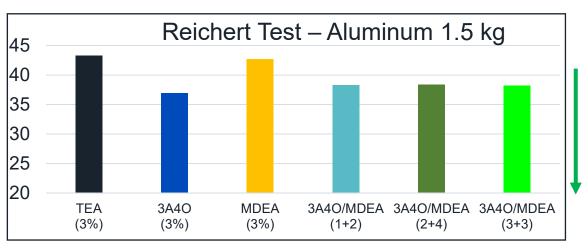
3A4O Blended With MDEA Improved pH Stability of Low-Purity TMPTO Ester

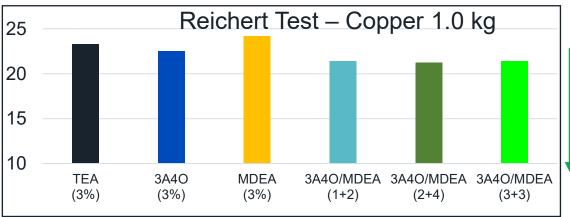
- Highest pH stability is obtained at target pH with blends 3A4O and MDEA
- Blending 3A4O and TEA did not show desired pH stability
- Blends of 3A4O showed desired pH stability and can be further optimized

3A4O Blended with MDEA Increased Biostability

ESTER TESTED


TMPTO


AMINES TESTED


- 3A4O
- TEA
- MDEA

TARGET PH OF 9.5

3A4O Blended With MDEA Significantly Increased Fluid Life

Advancion

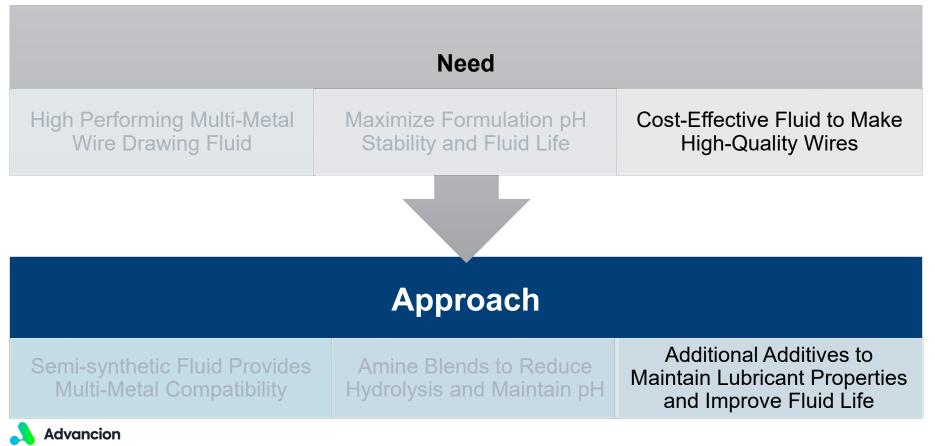
3A4O Blended with MDEA Shows Multi-Metal Lubrication Power

Results

- 3A4O (alone or in blends) shows better lubrication than MDEA or TEA on aluminum
- All formulations show good lubrication on copper

3A4O Blended with MDEA Maintains Multi-Metal Compatibility

- 3A4O offers the best aluminum compatibility, followed by blends of 3A4O with MDEA
- All formulations show good copper compatibility


Alloys	TEA (3%)	3A4O (3%)	MDEA (3%)	3A4O/MDEA (1 + 2)	3A4O/MDEA (2 + 4)	3A4O/MDEA (3 + 3)
рН	8.8	9.5	9.5	9.5	9.4	9.4
Aluminum					1	
Copper						

3A4O Blended with MDEA Improved Fluid Life of Low-Purity TMPTO Ester

- 3A4O blended with MDEA improved pH stability of low-purity TMPTO ester and increased biostability
- 3A4O blended with TEA did not reach target pH and did not improve pH stability of low-purity TMPTO ester
- 3A4O alone and blended with MDEA showed excellent multi-metal lubricant performance

Optimizing Next Generation Multi-Metal Wire Drawing Fluid Development Strategy

Addition of an Anti Oxidant Additive to Improve Fluid Life

Ester tested

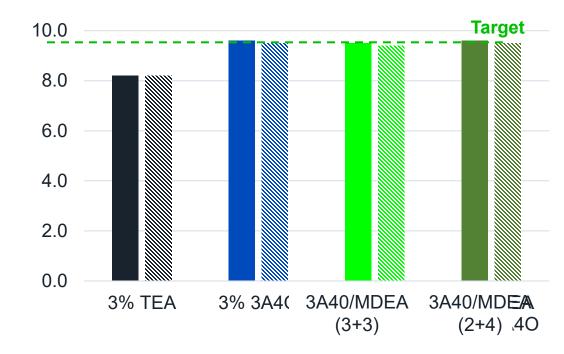
• TMPTO

Amines tested

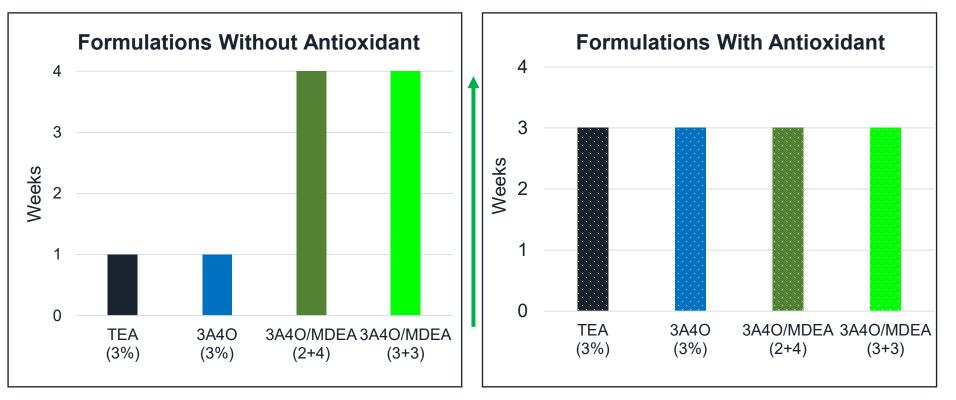
- 3A4O
- TEA
- MDEA

Anti Oxidant Additive tested

 Mixture of octylated and butylated diphenylamine


Target pH of 9.5

Ingredients	Weight %
Mineral oil	50
Sodium Sulfonate	17
Emulsifier package	4 - 6
TMPTO Ester	15
Amine(s)	3 - 6
Carboxylic Acid	0 - 3
Benzotriazole	0.3
Water	QSP
BIT 20%	1
Antioxidant	0.4
Antifoam	0.05


Antioxidant Additive Improved pH Stability

- 0.4% antioxidant was added to all TMPTO containing wire drawing fluid formulations
- All formulations showed very good pH to stability

All Formulations with Antioxidant Additive Showed Similar or Better Biostability Results

Addition of a Phosphate Ester

Ester tested

TMPTO

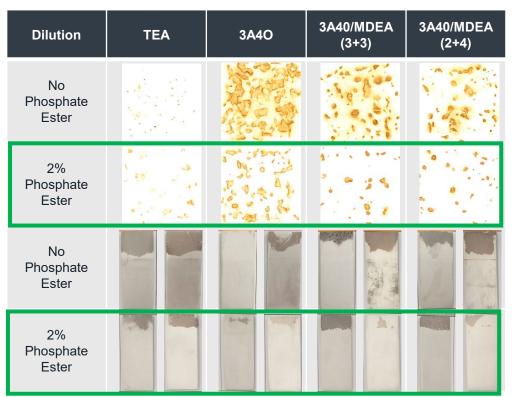
Amines tested

- 3A4O
- TEA
- MDEA

Phosphate Ester tested

 Phosphoric acid, mono- and di-C11-14 (linear and branched) alkyl esters

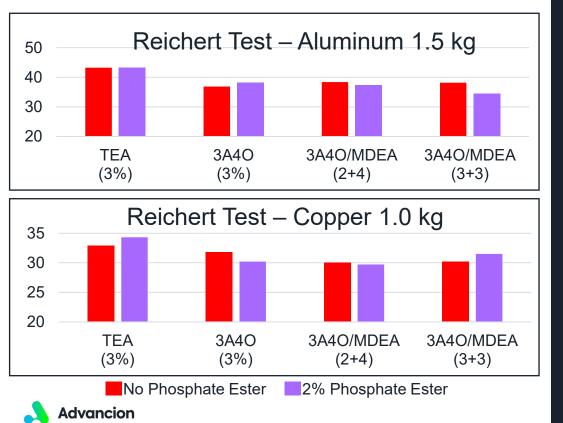
Anti Oxidant Additive tested


Mixture of octylated and butylated diphenylamine

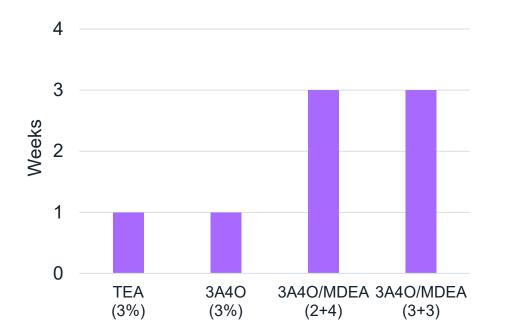
Target pH of 9.5

Ingredients	Weight %
Mineral oil	50
Sodium Sulfonate	17
Emulsifier package	4 - 6
TMPTO Ester	15
Amine(s)	3 - 6
Carboxylic Acid	0 - 3
Benzotriazole	0.3
Phosphate Ester	2
Water	QSP
BIT 20%	1
Antioxidant	0.4
Antifoam	0.05

Multi-metal Protection

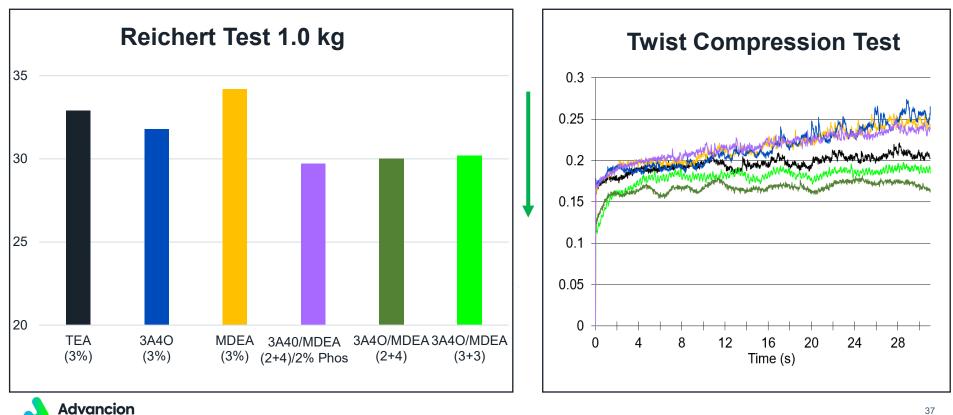


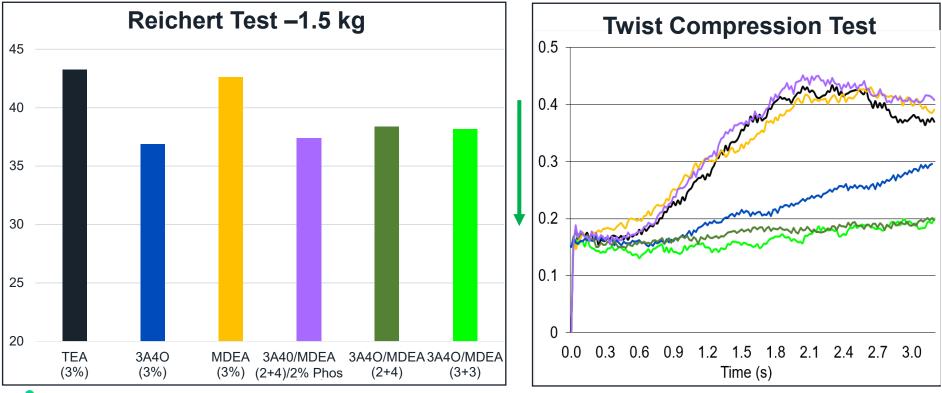
- 2% phosphate ester was added to all formulations
- All formulations with phosphate ester showed similar or improved ferrous and aluminum corrosion resistance


Lubrication Power with Addition of 2% of Phosphate Ester

 No significant impact on lubrication is obtained by adding a phosphate ester

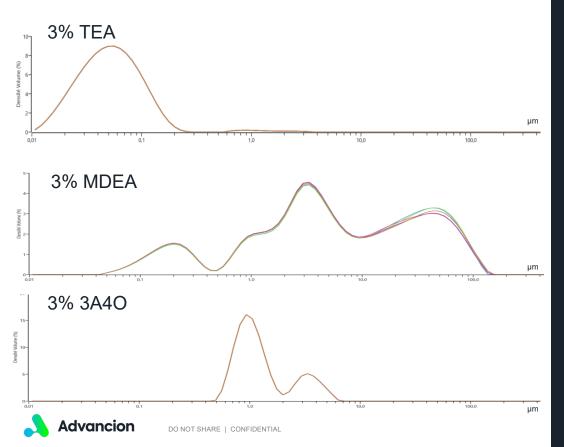
Biostability of Formulations with Addition of 2% Phosphate Ester




- 2% Phosphate Ester does not improve biostability
- It offsets the improvement gained in single amino alcohol formulations gained from the antioxidant
- 3A4O/MDEA blends continue to have higher biostability

dvancion do not share | confidential

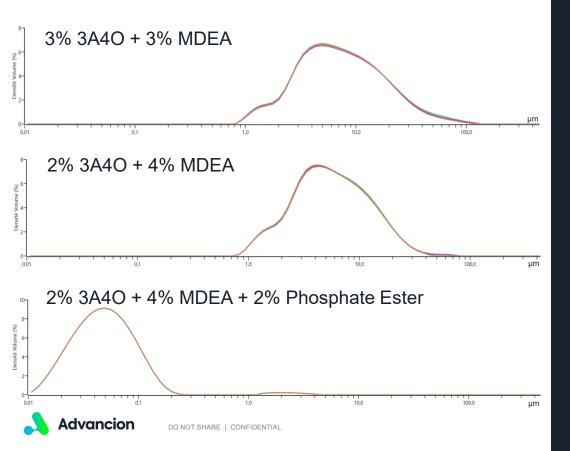
3A40 Blended with MDEA Shows Multi-Metal Lubrication Power on Copper



3A4O Blended with MDEA Shows Lubrication Power on Aluminum in Different Operating Regimes

🔊 Advancion

Emulsions Properties Impact Lubrication



Droplet Size Distribution

- TEA gives the smallest droplet size and the distribution is large.
- MDEA gives a multimodal droplet size and broad distribution.
- 3A4O gives a larger droplet size compared to TEA and bimodal distribution. Larger droplet size can be beneficial for the lubricity.

Stable Emulsion with Larger Particle Size Provides Higher AI Lubrication

- 3A4O and MDEA blends give large droplet size and broad distribution. This is beneficial for Al lubricity.
- 2% of phosphate ester in 3A4O/MDEA (2+4) gives a smaller droplet size and a distribution similar to TEA.

Antioxidant and Phosphate Ester Additives Provide Complimentary Benefits in Formulations to Amino Alcohols

Antioxidant Impact

- Antioxidant improved pH stability but not improve bioresistance in TMPTO formulations
- Antioxidant slightly reduce lubrication power

Phosphate Esters

- Provide a benefit on aluminum staining
- The impact on other parameters is negligible

Summary and Next Steps

- Semi-synthetic wire drawing fluids using esters, amines, and other additives demonstrate efficient wire drawing performance on Aluminum and Copper
- 3A4O (3-amino-4-octanol) showed strong WDF formulation versatility and benefits in multi-metal compatibility
- 3A4O mixed with multiple amino alcohols shows promise for wire drawing fluids and will be investigated further
- Performance can be further optimized through more research and collaboration with formulators

THANK YOU

