WASTE TREATMENT OF METALWORKING FLUIDS

6th International Metalworking Fluids Conference

John Burke CMFS, FSTLE

Wastewater Treatment Options

- Basic Thermal Evaporation
- Vapor Compression Distillation
- Ultrafiltration
- Chemical Treatment
- Oil Sludge Treatment

THE PERFECT METALWORKING FLUID:

Biostable No corrosion Minimal residue No dermatitis – excellent worker acceptance Low foaming Excellent tool life and surface finish Competitive cost

WARNING!

THAT PERFECT FLUID CAN BE REJECTED BY THE CUSTOMER IF IT CANNOT BE WASTE TREATED ON SITE OR IS TOO EXPENSIVE TO HAUL

MWF Waste Treatment

MWF Wastewaters Typically Include More Than MWFs

Contaminants In Metalworking Wastewaters

- Hydrocarbon Products (Floatable, Suspended / emulsifiable, and Settleable Organics)
 - Petroleum Oils, Vegetable Oils, Animals Oils, Waxes, Fatty Acid Soaps (Ca, Fe, Al), Chlorinated Esters and Paraffins
- Floatable, Suspended, and Settleable Solids
 - Graphite, Vibratory Debur, Floor "Dirt"
- Metals
 - Iron , Aluminum, Copper, Lead, Chrome, Zinc, Nickel, Manganese, Molybdenum
- Non-metals
 - Arsenic, Selenium
- Dissolved Solids
 - Salts (Sodium and Potassium Salts)
- Dissolved Organics
 - Amines, Amides, Esters, Glycols, Surfactants, Detergents, Fatty
 - Acids, Fatty Alcohols, Antimicrobials, Phosphate Esters

Increased Difficulty In Removal From Water

Commonly Regulated Organic Pollutants

- BOD₅ Biochemical Oxygen Demand five day
- COD Chemical Oxygen Demand
- O&G Oil & Grease Hexane Extractable Materials (HEM)
 - → FOG Fats, Oil and Grease (Old terminology)
- TPH Total Petroleum Hydrocarbons, Silica Gel Treated (TPH SGT)
- TSS Total Suspended Solids
- TTO Total Toxic Organics (For Categorical Dischargers)

Commonly Regulated Inorganic Pollutants

• AI	Aluminum	• CN	Cyanide
• Fe	Iron	• As	Arsenic
• Ag	Silver	• Se	Selenium
• Ni	Nickel	• NO ₃	Nitrate
• Pb	Lead	• SO ₄	Sulfate
• Zn	Zinc	• NH ₃	Ammonia
• Cu	Copper	• P	Phosphorus
• Cd	Cadmium	• N	Nitrogen 🛩
• Hg	Mercury		

Increased
 Regulatory
 Interest

Typical Pollutant Limits

• BOD5	250 mg/L
• COD	500 mg/L
 Total Suspended Solids 	250 mg/L
Oil & Grease	10 to 100 mg/L
Metals	Varies per metal and location
 Other Inorganics 	Varies per organic and location
• pH	5.5 to 9.0

• Remember.....It Depends on Location

Regulatory Model Example

MWF Pollutant Properties

Mixed 5% by volume

FLUID	BOD5	COD (mg/L	O&G .)	рН	
A	15,000	500,000	35,000	8.7	Basic Emulsion
B	26,500	1,100,000	29,000	8.9	Premium Emulsion
C	13,500	45,000	3,500	9.3	Semi -Synthetic
D	9,500	30,000	900	9.2	Synthetic

- B = Premium Emulsified oil 65% oil
- C = Semi Synthetic 10% oil
- D = True Solution Synthetic 0% oil

MWF Pollutant Properties

Mixed 5% by volume

Wastewater Treatment

• Evaporation Method

Basic Thermal Evaporation

• Objective:

Concentrate waste by evaporating water phase

Basic Thermal Evaporator

Basic Thermal Evaporation Process

• Advantages

- Concentrates waste
- Eliminate sewer discharge
- Easy operation
- Low capital cost
- Low H₂O in sludge
- Unaffected by solids

Disadvantages

- Fire or explosion hazard
- Foam
- High treatment cost
- Energy intensive
- Air pollution permit
- Corrosion, Chlorides
- Odors
- Suitable for low volumes
- Volatile liquids will follow distillate

Vapor Compression Distillation

- Distillation with heat recovery (92%)
- Flows up to 400,000 liters per day
- Partial mechanical method to oil/water separation
- Extremely high oil sludge content
- (80 +%)
- Treated effluent (water phase) can be recycled to noncritical processes
- Much more energy efficient than basic thermal evaporation

Basic Vapor Compression Distillation

100,000 Liter per Day Vapor Compression System

Location Caterpillar East Peoria, Illinois USA

100,000 Liter per Day Vapor Compression System

Location Caterpillar East Peoria, Illinois USA

Vapor Compression Distillation

Advantages

- No / low metals in discharge
- Extremely low BOD and COD in discharge
- No oil in discharge
- Unaffected by solids
- Relatively compact
- Low H₂O in sludge
- Low cost to treat
- Not energy intensive
- No odors
- No fire risk
- No air permit
- Concentrates waste 80%

Disadvantages

- Foam
- Higher capital cost over basic evaporation processes
- Volatile liquids will flash over

Evaporation / Distillation Cost to Operate (US Dollar / 1000 liter)

- Basic Thermal Evaporation \$32.00¹
- Vacuum Assist Thermal Evaporation \$21.00¹
- Vapor Compression Distillation \$ 2.60²

- 1. Primary energy source is natural gas / methane CH₄
- 2. Primary energy source is electricity

Evaporation Method

Effects on Effluent (Distillate)

- A = Basic Emulsified Oil 80% oil
- B = Premium Emulsified oil 65% oil
- C = Semi Synthetic 10% oil)
- D = Synthetic 0% oil

Wastewater Treatment

• Ultrafiltration

Ultrafiltration

• Method:

Separate oil and suspended solids from water using a physical barrier

Basic Ultrafilter Flow Schematic

Ultrafiltration

Ultrafiltration

Ultrafiltration - 1 Inch Tube -- Wide Channel -

Ultrafiltration - 1 Inch Tube -- Wide Channel -

Ultrafiltration 1 Inch Tube Installation 3,000 liters / day

Ultrafiltration - Spiral – Narrow Channel Installation 150,000 liters / day

Location Dana Corporation Glasgow, Kentucky, USA

Ultrafiltration Process

Ultrafiltration Process

Ultrafiltration Process

Ultrafiltration Process

Ultrafiltration Process

Advantages

- Low treatment cost
- Easy installation
- Can Be Automated
- Easy operation
- Maintain discharge quality during upsets
- Won't pass oil
- Small footprint
- High capacity
 - (>1,000,000 LPD)

Disadvantages

- Solids problematic
- Can't treat true solution synthetics
- Free oil problematic
- Dissolved metals pass
- pH adjustment
- Dilute waste stream better
- Silicone somewhat problematic
- Silicate is very problematic

Key Points

Ultrafiltration Method

Effects on Effluent

FLUID	BOD ₅		COD		O&G		рН
	Before	After	Before	After	Before	After	
А	15,000	200	500,000	600	35,000	<mark>55</mark>	<mark>8.</mark> 7
В	26,500	600	1,100,000	1,200	29,000	150	<mark>8.</mark> 9
С	13,500	450	45,000	5,500	3,500	140	9.3
D	9,500	700	30,000	25,000	900	80	9.2

- A = Basic Emulsified Oil 80% oil
- B = Premium Emulsified oil 65% oil
- C = Semi Synthetic 10% oil)
- D = Synthetic 0% oil

Ultrafiltration

Cost to Treat

Assumptions:

1" tube- wide channel - 3-year membrane life

Process 20,000 liters per day – 5 days per week

Cost = \$1.30 USD / 1000 liters

Wastewater Treatment

• Chemical Treatment

• Method:

Separate oil from water through chemical additions to achieve

- a. Emulsion destabilization
- **b.** Precipitation
- c. Flocculation
- d. Then settling or flotation of oil and oil-like containing wastes

Commonly Used Chemicals

• Mineral acids

Sulfuric (most common, least expensive, non-fuming)

Commonly Used Chemicals

Most Common

Polyvalent Metastable Salts

- Poly Aluminum Chloride -
- Aluminum Sulfate ~
- Calcium Chloride
- Magnesium Chloride
- Magnesium Sulfate
- Ferric Sulfate
- Ferrous Sulfate

Typical cations used in wastewater treatment

to destabilize emulsions

Calcium	Ca ++
Magnesium	Mg ++
Iron Ferrous	Fe ++
Iron Ferric	Fe ***
Aluminum	AI +++

Aluminum is most common cation, as either: Aluminum Sulfate or Poly Aluminum Chloride

Commonly Used Chemicals

- Reactive bases
 - Sodium Hydroxide
 - Calcium Hydroxide

Acid - Alum - Split

- Sulfuric Acid Cationic
- Aluminum Sulfate Cationic
- Sodium Hydroxide Base / Neutralizer

or

- Calcium chloride instead of Aluminum Sulfate
 - Referred to as the Ford Windsor Process

Typical Emulsified Oil Schematic

Basic Theory of Chemical Separation

Basic Theory of Chemical Separation

Basic Emulsified Oil + Sulfuric Acid pH 2.5 + aluminum sulfate

Basic Emulsified Oil + Sulfuric Acid pH 2.5 + aluminum sulfate + Sodium hydroxide

After Flotation

Semi - Synthetic

Semi – Synthetic + Sulfuric Acid pH 2.5 + Aluminum Sulfate

- + Sodium Hydroxide
- + Flotation

Synthetic

Synthetic + Sulfuric Acid + Aluminum Sulfate

Sodium Hydroxide + Flotation

Waste Treatment Polymers

Chemical Treatment – Starch Polymer

Polymer Treatment Advantages

- Lower Dosage Levels
- Wider Application Range
- Reduced Sludge Volumes
- Potentially Better Water Quality
- Potentially Easier to Recover Oil from Sludge Phase

Chemical Treatability Sequence for MWF

Wastewater Treatment - Batch Method

Daily Bench Testing is Required

Chemical Treatment Method Results

Additions of:

- Sulfuric Acid
- Aluminum Sulfate
- Sodium Hydroxide

FLUID	BOD ₅		COD		O&G		рH
	Before	After	Before	After	Before	After	
A	15,000	500	500,000	200	35,000	10	<mark>8.</mark> 7
В	26,500	2,000	1,100,000	400	29,000	400	<mark>8.9</mark>
С	13,500	1,200	45,000	320	3,500	350	<mark>9.3</mark>
D	9,500	700	30,000	190	900	5	9.2

- A = Basic Emulsified Oil 80% oil
- B = Premium Emulsified oil 65% oil
- C = Semi Synthetic 10% oil)
- D = Synthetic 0% oil

Advantages

- Handle very dilute fluids
- Handle excess free oil
- Can be varied in output
- Low cost to treat (basic emulsions)
- Easier oil recovery
- Tolerates high solids
- Low equipment / capital cost

• Disadvantages

- Technically intensive
- Difficult with synthetics or semi-synthetics
- Difficult with "hard water stable" emulsions
- May require complex instrumentation
- May fail with out warning
- Hazardous chemical handling
- Maintenance intensive (corrosive chemicals)

— Key Point

• Cost to Treat:

Basic Oil Emulsion Premium Emulsion Semisynthetic Synthetic \$ 0.25 USD / 1000 Liters \$ 2.25 USD / 1000 Liters \$ 2.20 USD / 1000 Liters \$ 0.75 USD / 1000 Liters

Cost Comparisons

Performance Comparison

Oil Recovery

The Long-Term Challenge

Only solved one-half of the problem with wastewater treatment

Oil Recovery after Conventional Treatment

• Objective

Minimize waste hauling

Possibly add value to hauled oil

Oil recovery/recycling

Oil Sludge Separation Options

- Heat 140 180°
- Acid Sulfuric acid
- Polymers Usually cationic
- Solvent Xylene (not water soluble)
- Or Any Combination Above
- Cost approximately \$22 / 1000 liters (chemical + heat only)
- May still have to add up to 10% water in the oil phase

Waste Treatment Management Summary

- Advantages & disadvantages to each strategy /process / method
- Fluid selection is very important
- No universal treatment method exists
- WARNING!
- THAT PERFECT METALWORKING FLUID CAN BE REJECTED BY THE CUSTOMER IF IT CANNOT BE WASTE TREATED ON SITE OR IS TOO EXPENSIVE TO HAUL

Thank You

John Burke CMFS, FSTLE

Email john.burke@quakerhoughton.com

Cell +12162351995