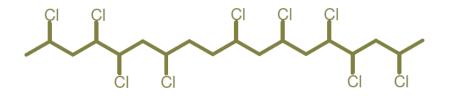


## Chlorinated Paraffin Replacement Challenges and Additive Selection Strategies

6<sup>th</sup> International Metalworking Fluids Conference January 8-10, 2024 T. McClure, A. Morgan: Sea-Land Chemical Co. - SLC Testing Services




#### INDUSTRY TRENDS DRIVING CHANGE IN MWF

- Accelerating Advancements in Manufacturing and Materials Technologies
  - Vehicle Electrification
  - Vehicle and aerospace lightweighting:
    - AHSS (<u>https://ahssinsights.org/</u>) aluminum, magnesium, titanium, nickel alloys, SS, copper
  - Health, Safety, and Environmental Considerations: Sustainability
    - Global registrations, labeling, CPs, secondary amines, phosphorus bearing adds
  - Global Competition: Increasing Productivity
    - Higher speeds: Heat, foam,
    - Multimetal MWF
    - Less downtime: longer life fluids
    - Cost reduction
    - Speed to market

Systematic, efficient, MWF formulation techniques, used along with rapid, flexible test methods which are predictive of field performance.

Friction and wear testing for CP replacement work

## CHLORINATED PARAFFINS



- Chlorinated Aliphatic Hydrocarbons
  - Complex mixtures:
    - Chlorination of paraffin petroleum fractions and olefins
  - Characterized by carbon chain length of feedstock and % Chlorine
- Major Commercial Uses (since 1930s)
  - Lubricants: EP Additive
  - Plasticizer in plastics, coatings, adhesives, sealers, caulks and rubber
  - Flame retardant
  - Waterproof in textiles

## CHLORINATED PARAFFIN LIMITATIONS

- Regulatory / HS&E Pressures
  - Regulations vary geographically
  - Global CP containing MWF formulations more difficult
- Ferrous Metal Stain and Corrosion:
  - Welding through residues on parts releases additional chlorides
- Removal Difficulties in Some Formulations / Applications
- Increased Fluid Disposal Costs
- Limited Solubility in Some Basestocks

## WHY ARE CHLORINATED PARAFFINS STILL USED IN MWF?

- Highly Cost-effective E.P. additives:
  - Reactive EP plus polar film forming: Prevent Adhesive Failures
- Little Adverse Effects When Used at High Concentrations
  - Required for very severe MWF applications
    - Fineblanking, extrusion, deep drawing, tube drawing
    - Difficult to machine and form materials
- Versatility:
  - Oil soluble and easily emulsifiable
  - Perform well on a variety of metals
  - Compatible with common tool materials
  - Compatible with other common additives
  - Stability: biological and alkalinity
- Light color low odor

## TUBE APPLICATIONS REQUIRING CHLORINATED PARAFFINS

- Difficult to Work Materials
  - Austenitic stainless steels (300 series, 17-7PH), hastelloy, waspaloy, Inconel 625 and 718.
    - Tubing under 4mm diameter
    - Shaped tubing
    - Short run tube production
- Specific applications
  - Hypodermic syringe needles (<4mm)</li>
  - LC/GC columns (<4mm)</p>
  - Bourdon tubes (<4mm, elliptical)</li>
  - Stents (<4mm)</li>
  - Missile thrust chamber jackets (<4mm, shaped)</li>
  - Nuclear control rods (<4mm)</li>



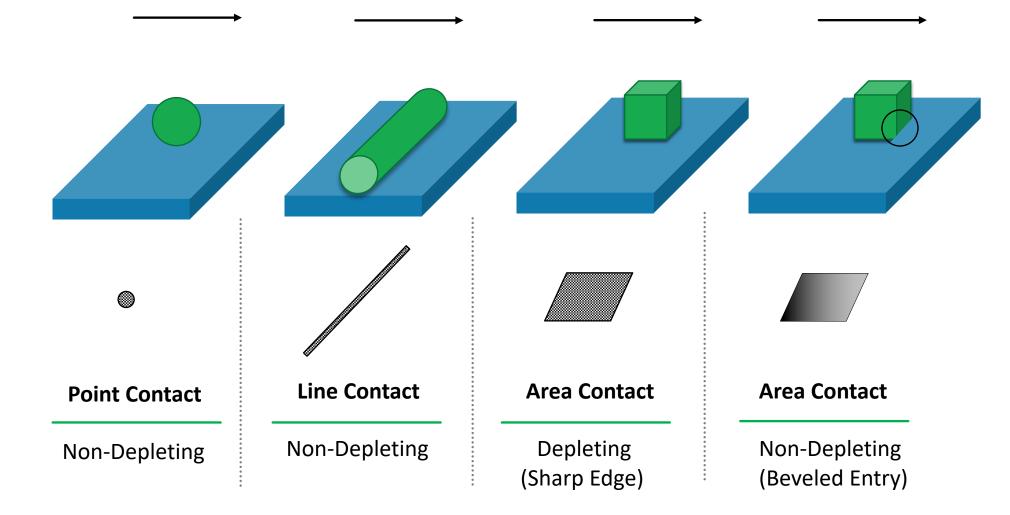


J. Brooks, RichardsApex Inc: Chlorine Use in Stainless Steel Tube Manufacturing: STLE Annual Meeting 2023

## TRIBOTESTING: BENCH AND SIMULATION TESTS

- Simulation Tests
  - Scaled down industrial process in laboratory
  - Use: Study influence of variables on production
  - Correlates well with production
- Bench Tests
  - Create specific tribological condition(s)
  - Use: Understand basic phenomena
  - Lower time and cost to run than simulation
- If mechanisms are understood:
  - May apply bench test results to production
  - May apply simulation test results to understanding basic phenomena

## SYSTEMATIC TRIBOTEST SELECTION: USING TRIBOSYSTEM ANALYSIS


- Define the tribosystem for the actual production operation
- Define the tribosystem for the tribotests being considered
- Match the most important features of the MW operation with those of the tribotest(s)
- Run the tests and analyze results
- Validate test method(s) selected in the actual MW operation

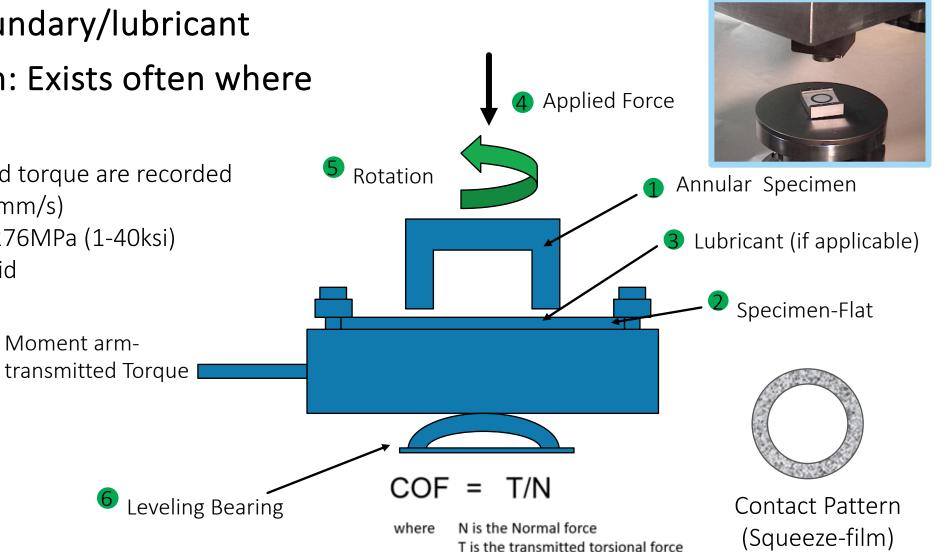
#### Tribosystem Analysis Format

| Section | <u>Content</u>                                                                                |
|---------|-----------------------------------------------------------------------------------------------|
| Heading | Project ID and Date: Short statement of problem                                               |
| 1       | Hardware Configuration and Materials (surfaces)                                               |
| 1.1     | Interface Descriptions                                                                        |
|         | Contact geometry, dimensions, arrangement, surface treatments, sketches, diagrams and photos. |
| 2       | Operating Environment                                                                         |
|         | Motion, loading, environment                                                                  |
| 3       | Problem Description                                                                           |
|         | Failure mode: Damage (wear) type, performance metrics, constraints, history                   |
| 4       | Attachments and exhibits                                                                      |
|         | Additional data that may bear on the problem                                                  |

Blau, Peter J. (2015), Tribosystem Analysis: A Practical Approach to the Diagnosis of Wear Problems, CRC Press, Taylor and Francis Group, Boca Raton, FL

#### TRIBOTEST CONTACT GEOMETRY: LUBRICANT DEPLETION

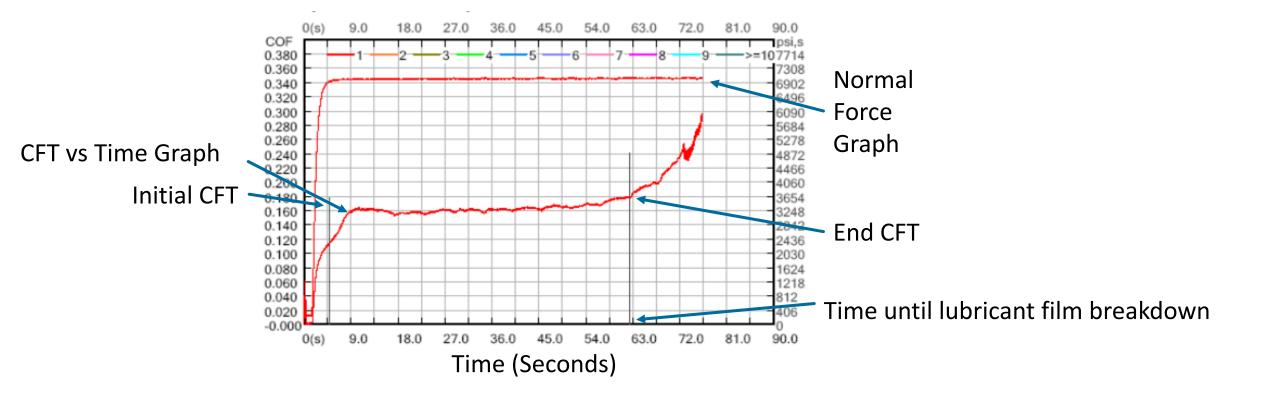



Gregory Dalton, P.Eng, PhD, College of the North Atlantic Faculty, TribSys Inc.

| Test Method                        | Failure Mode(s)                     | Simulation /<br>Bench | Contact     | Depleting? | Lubrication<br>Regime | Adhesion? | Wear Test? | COF<br>Measured? |
|------------------------------------|-------------------------------------|-----------------------|-------------|------------|-----------------------|-----------|------------|------------------|
| Four Ball EP                       | Adhesion /<br>Galling               | Bench                 | Point       | Ν          | EP, B                 | Y         | Y          | Y                |
| Four Ball Wear                     | Tool wear                           | Bench                 | Point       | Ν          | B, Mixed, EHD         | Ν         | Y          | Y                |
| Pin and Vee<br>Block- EP           | Adhesion /<br>Galling               | Bench                 | Line        | Ν          | EP, B                 | Y         | Ν          | Ν                |
| Pin and Vee<br>Block- Wear         | Tool wear                           | Bench                 | Line        | Ν          | B, Mixed              | Ν         | Y          | Ν                |
| Reichert and<br>Brugger            | Tool wear                           | Bench                 | Point       | Ν          | B, Mixed, EHD         | Ν         | Y          | Ν                |
| Tapping Torque<br>(Roll form tap)  | Tool<br>wear/ <mark>Adhesion</mark> | Simulation            | Line - Area | Ν          | B, Mixed, EHD         | Y         | Ν          | Ν                |
| Twist<br>Compression<br>Test (TCT) | Adhesion /<br>Galling               | Bench                 | Area        | Y          | EP, B, Mixed          | Y         | Ν          | Y                |

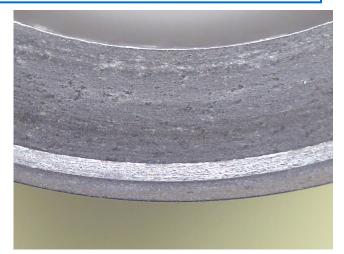
After: Schey, J. A. (1997), A Critical Review of the Applicability of Tribotesters to Sheet Metalworking, SAE 970714

## TWIST COMPRESSION TEST: ASTM G223-23


- Contact creates boundary/lubricant starvation condition: Exists often where MWF failures occur
- Normal force and transmitted torque are recorded
- Speed is typically 10rpm (12mm/s)
- Interface pressure range: 7-276MPa (1-40ksi)
- Annulus: 25mm od X 19mm id



#### TCT TEST RESULTS: ASTM G223-23


- Initial Coefficient of friction in TCT (CFTi)
- Time until lubricant film failure (TBD)
- Average coefficient of friction (CFT Avg)
- Avg CFT after a specific time: 30 seconds

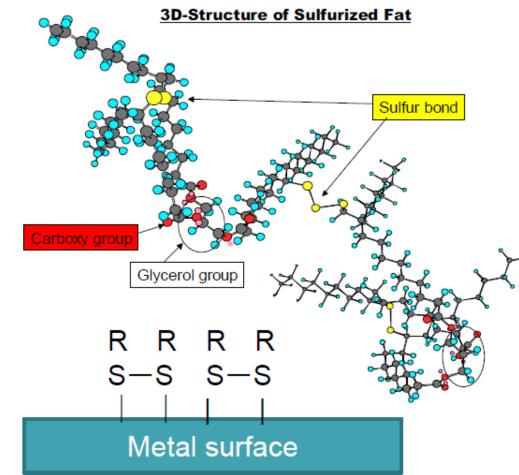
- Coefficient of friction at specific time: 5 seconds
- Friction Factor: TBD/(0.2CFTi+0.8CFTavg)
- Surface damage/galling
- Tribochemical residue analysis



## MATCHING FAILURE MODE OF PRODUCTION WITH TRIBOTEST (TCT)





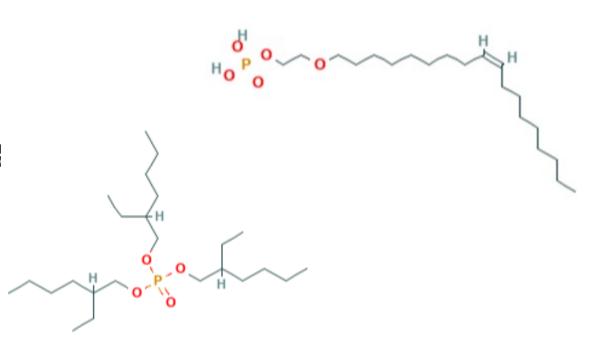

TCT D2 Tool Steel

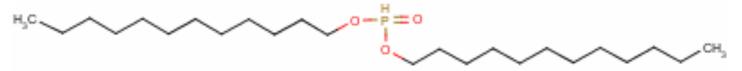


TCT 1008 CRS Sheet

## CHLORINATED PARAFFIN REPLACEMENTS: SULFURIZED

- Consists of Sulfur Chain and Carrier (EP + Polar film formers)
  - Vary both to tailor properties / performance
    - Olefins (20-40% S)
    - Triglycerides (10-20% S)
    - Esters (10-30% S)
    - Fatty acids (~10% S)
- Dark color high odor
- Light color low odor





#### SULFURIZED E. P. ADDITIVE POTENTIAL LIMITATIONS

- Staining of copper alloys for active S grades
- High activity additives may attack some tool coatings
- High tool wear possible (tribocorrosion)
  - High activity sulfur at >4% S
- Increasing S content does not always increase load carrying capability
- Less activity than CP with some metals
- Enhanced biological activity
- Color and odor vary

## CHLORINATED PARAFFIN REPLACEMENTS: PHOSPHORUS BEARING

- Phosphate Esters
  - Mono, di and tri esters
  - Length of carbon chains (C-6 to C-18
  - Degree of alkoxylation
  - Acid values (0->350mgKOH/g)
  - 1-14% Phosphorous content
  - Solubility: Water and most basestocks
- Phosphites





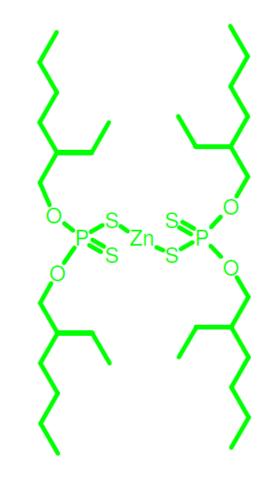
ZDDP

#### PHOSPHORUS BASED E. P. ADDITIVE POTENTIAL LIMITATIONS IN MWF

- Enhanced biological activity
- Potential regulatory pressure
  - Great lakes algal blooms
- Low P content (compared with Cl in CP)
- Limited benefit to using high levels
- Carbide cobalt leaching potential

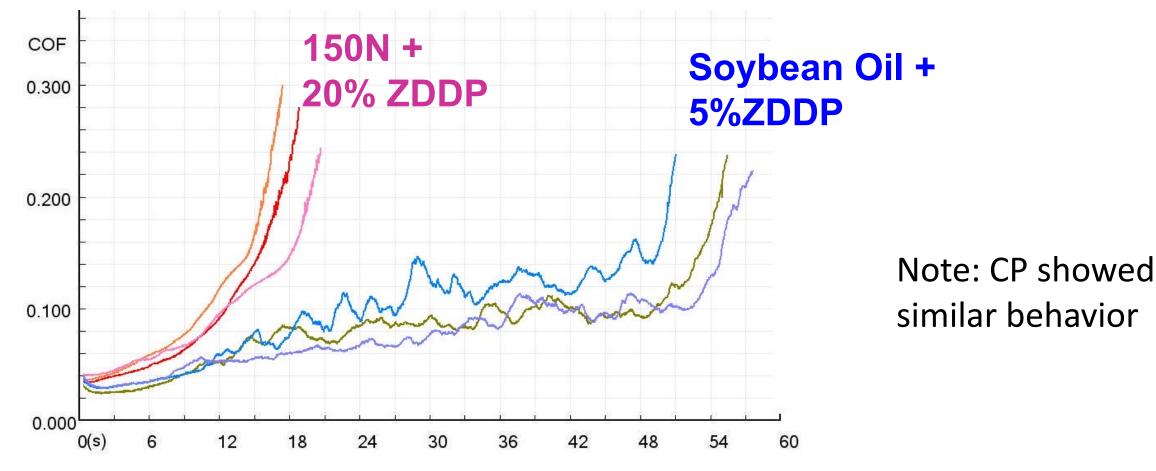
## CHLORINATED PARAFFIN REPLACEMENTS: OVERBASED SULFONATES

- Not a chemical reactive E.P.
  - Metal carbonate / hydroxide particles dispersed in oil with sulfonate (calcium, sodium or magnesium sulfonate)
- Various particle sizes
  - Crystalline larger gelled
  - Amorphous colloidal
- Total base number (TBN) to 400mgKOH/g
- Synthetic or natural (petroleum) sulfonates



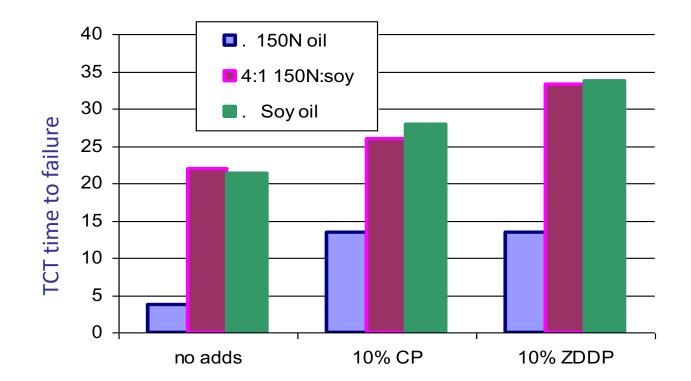

## **OVERBASED SULFONATES**

- Advantages
  - Synergistic with Sulfur and Chlorine E.P.
  - Corrosion protection
  - Acid scavenging
  - Detergent
- Formulation Limitations:
  - Compatibility
    - Gelling in oils containing some fatty acids and esters
    - Acid phosphates and some active sulfur sources
  - Primarily used in straight oils


## CHLORINATED PARAFFIN REPLACEMENTS

- Others
  - Zinc and Molybdenum compounds
  - Simple, complex and polymeric esters
  - Polyalkylene glycols (water soluble)
  - Polymers
  - Solid lubricants(CaCO<sub>3</sub>, graphite, MoS<sub>2</sub>, nanoparticles)
  - Other fatty acids and fatty derivatives
- Combinations of additives are required to replace chlorinated paraffins in many applications

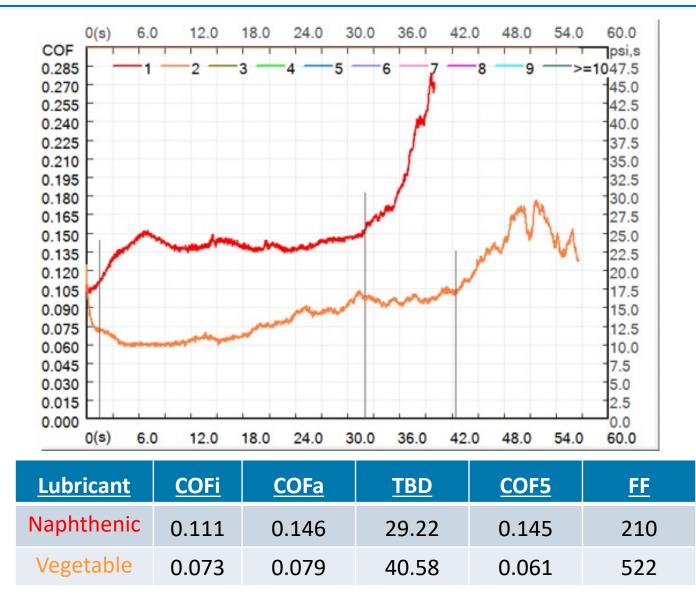



#### **BASESTOCK SELECTION AND ADDITIVE RESPONSE**

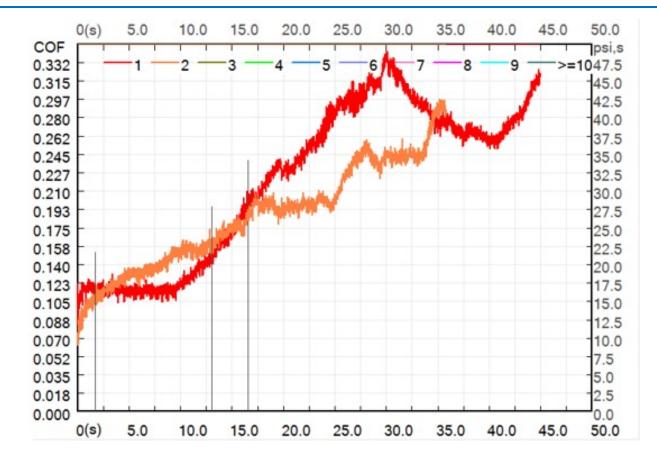
ZDDP Blends: 29ksi / SAE 1008 CRS: TCT COF vs Time Comparisons



Tribology Letters (2010) 37:111-121, S. J. Asadauskas, Girma Biresaw, T. McClure

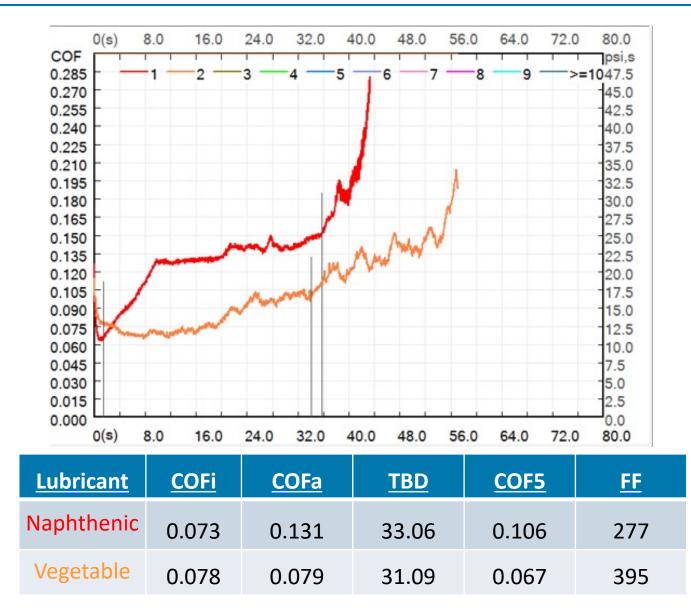

#### 10% EP ADDITIVE RESPONSE (TCT TBD) IN BASESTOCK BLEND



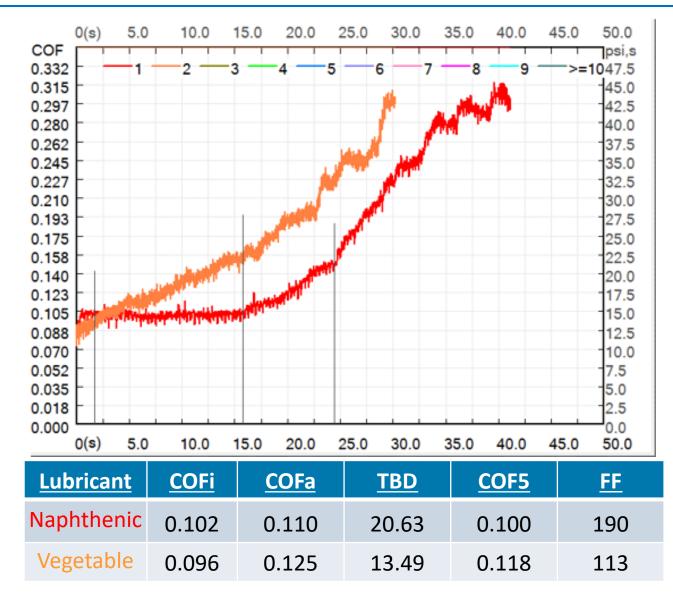

# 20% SBO in 150N gave similar response to 100% SBO basestock

Tribology Letters (2010) 37:111-121, S. J. Asadauskas, Girma Biresaw, T. McClure

#### AISI 1008 CRS: 10% SULFURIZED OLEFIN IN NAPHTHENIC AND VEGETABLE OIL COMPARISON: TCT COF VS TIME GRAPHS: 15KSI




#### SS304: 10% SULFURIZED OLEFIN IN NAPHTHENIC AND VEGETABLE OIL COMPARISON: TCT COF VS TIME GRAPHS: 3KSI




| <u>Lubricant</u> | <u>COFi</u> | <u>COFa</u> | <u>TBD</u> | <u>COF5</u> | FF  |
|------------------|-------------|-------------|------------|-------------|-----|
| Naphthenic       | 0.118       | 0.136       | 14.42      | 0.116       | 109 |
| Vegetable        | 0.107       | 0.135       | 10.24      | 0.132       | 79  |

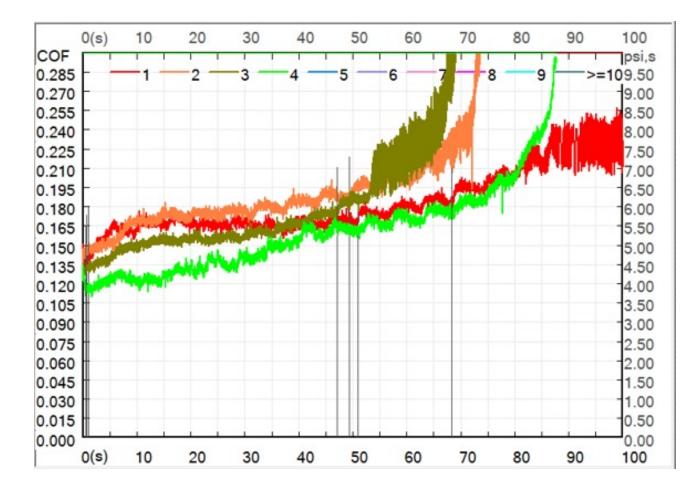
#### AISI 1008 CRS: 10% SULFURIZED OLEFIN+5% PHOSPHITE IN NAPHTHENIC AND VEGETABLE OIL COMPARISON: TCT COF VS TIME GRAPHS: 15KSI



#### SS304: 10% SULFURIZED OLEFIN+5% PHOSPHITE IN NAPHTHENIC AND VEGETABLE OIL COMPARISON: TCT COF VS TIME GRAPHS: 3KSI

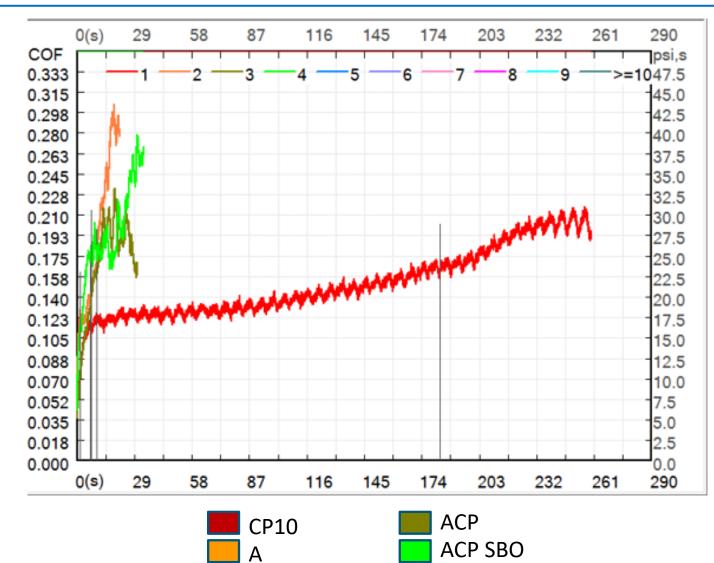


- Which workpiece alloys are most likely to be involved in "critical uses" for CPs?
- Are partial CP substitutions effective?
- Does the inclusion of over 20% vegetable oil improve the performance of replacement packages when used with low levels of CP?

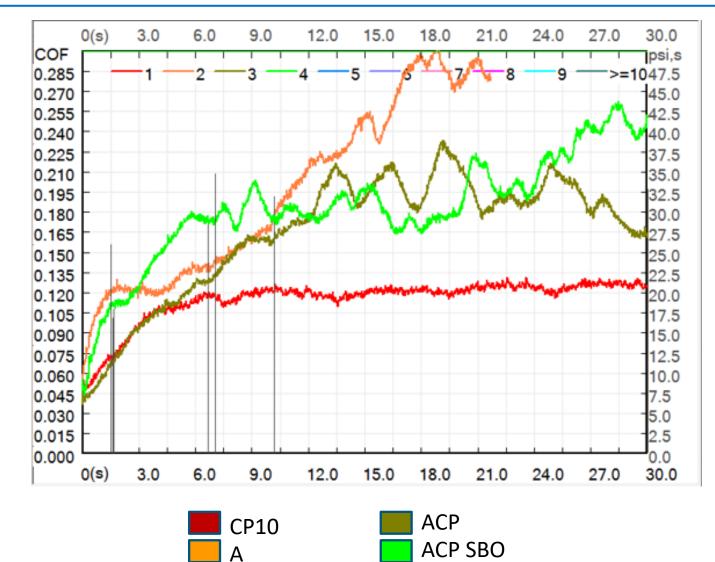

## TEST FORMULAS (25CST. @ 40°C)

| Ingredient               | CP10   | Α           | ACP         | ACP SBO      |
|--------------------------|--------|-------------|-------------|--------------|
| Naphthenic               |        |             |             |              |
| Basestock(s)             | 90.00  | 80.00       | 83.00       | 46.60        |
| vLCCP (48%Cl)            | 10.00  | 0.00        | 3.00        | 3.00         |
| Sulfurized olefin (37%S) | 0.00   | 10.00       | 7.00        | 7.00         |
| High Polarity Olefin     |        |             |             |              |
| Copolymer                | 0.00   | 5.00        | 3.50        | 3.50         |
| ZDDP                     | 0.00   | 5.00        | 3.50        | 3.50         |
| Soybean Oil              | 0.00   | <u>0.00</u> | <u>0.00</u> | <u>36.40</u> |
| Total                    | 100.00 | 100.00      | 100.00      | 100.00       |

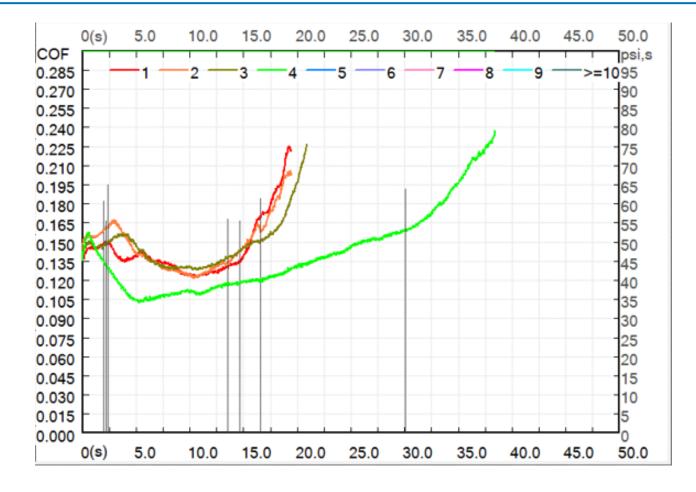
## WORKPIECE MATERIALS


| Metal          | Туре                        | YS(psi) | TS(psi) | Fe<br>(approx.) | Ni    | Cr    | Ti    | Со    | Мо   | Mn    | Al    | Other   |
|----------------|-----------------------------|---------|---------|-----------------|-------|-------|-------|-------|------|-------|-------|---------|
| CRS 1008       | Mild Steel                  | 25000   | 44000   | 99              | NA    | NA    | NA    | NA    | NA   | 0.4   | NA    | NA      |
| DP600          | Dual Phase<br>AHSS          | 87000   | 101500  | 98              | NA    | NA    | NA    | NA    | NA   | 1.4   | NA    | NA      |
| SS409          | Ferritic                    | 37460   | 62170   | 88              | 0.168 | 10.92 | 0.107 | 0.016 | NA   | 0.406 | NA    | .25 Nb  |
| SS410          | Martensitic                 | 46400   | 79000   | 87              | 0.25  | 12.29 | NA    | NA    | 0.05 | 0.54  | 0.001 | NA      |
| SS304          | Austenitic                  | 41035   | 94365   | 72              | 8.13  | 18.35 | NA    | NA    | NA   | 1.03  | NA    | NA      |
| A286           | Fe Based<br>Superalloy      | 50500   | 97000   | 56              | 24.82 | 14.52 | 2.13  | 0.06  | 1.19 | 0.3   | 0.16  | NA      |
| Inconel<br>718 | Nickel Based                | 70000   | 122000  | 20              | 52.18 | 17.96 | 1.02  | 0.16  | 2.86 | 0.12  | 0.61  | 4.98 Cb |
| Waspaloy       | Nickel Based<br>High Cobalt | 90000   | 150000  | 2               | 57    | 19.1  | 3.14  | 13.38 | 4.29 | 0.06  | 1.44  | NA      |

## AISI 1008 CRS: 5KSI TCT COF VS TIME GRAPHS

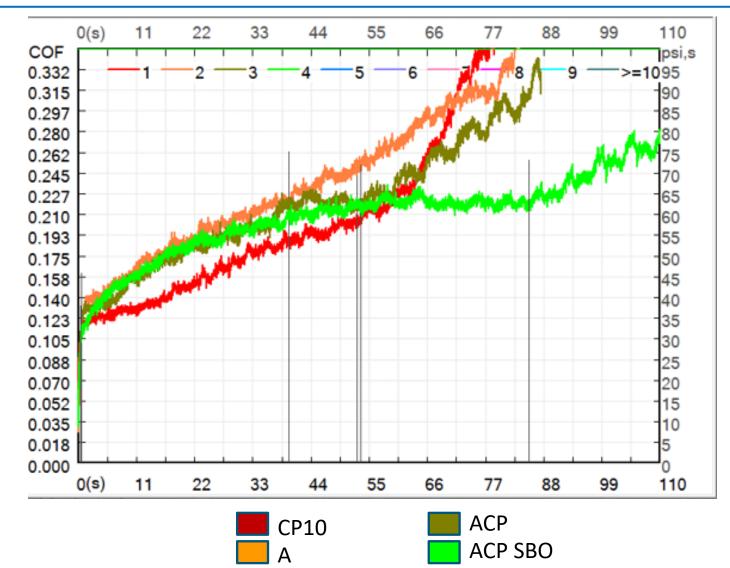




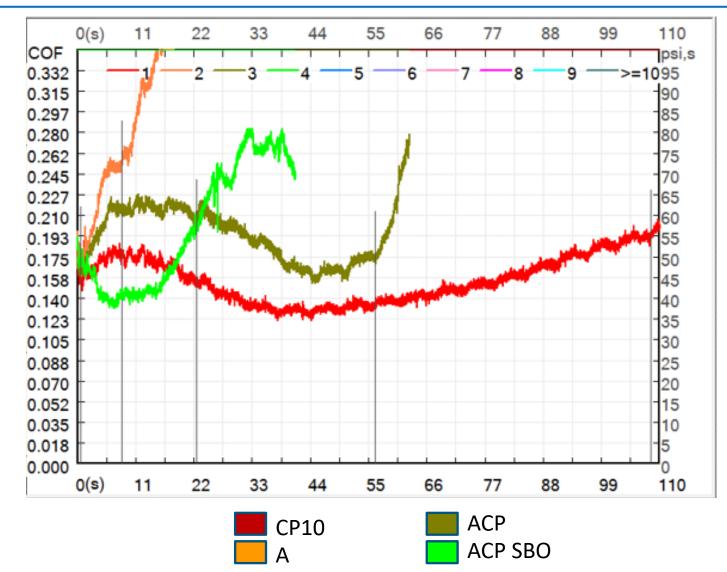


#### SS304: 2KSI TCT COF VS TIME GRAPHS



#### SS304: 2KSI TCT COF VS TIME GRAPHS




#### SS 410: 20KSI TCT COF VS TIME GRAPHS



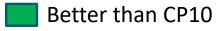



#### **INCONEL 718: 5KSI TCT COF VS TIME GRAPHS**



#### WASPALOY: 5KSI TCT COF VS TIME GRAPHS




## TCT FRICTION FACTOR SUMMARY (TBD/(0.8 COFAVG+0.2 COFI))

| Metal       | Туре                        | СР10 | А   | АСР | ACP SB0 |
|-------------|-----------------------------|------|-----|-----|---------|
| CRS 1008    | Mild Steel                  | 299  | 263 | 305 | 474     |
| DP 600      | Dual Phase<br>AHSS          | 662  | 466 | 511 | 630     |
| SS 409      | Ferritic                    | 320  | 245 | 509 | 438     |
| SS 410      | Martensitic                 | 93   | 98  | 97  | 162     |
| SS 304      | Austenitic                  | 1301 | 35  | 73  | 41      |
| A 286       | Fe Based<br>Superalloy      | 24   | 15  | 36  | 23      |
| Inconel 718 | Nickel Based                | 337  | 233 | 305 | 465     |
| Waspaloy    | Nickel Based<br>High Cobalt | 645  | 36  | 331 | 133     |



Worse than CP10

Approx. Equal to CP10



## ADDITIVE SCREENING STRATEGIES

- Design of Experiments (DOE)
  - A planned approach to determine cause and effect relationships and interactions.
  - Applicable to any process with measurable inputs and outputs.
- Mixture DOE: Widely used to balance 3-4 components to optimize formulations

Question: How to select the 3-4 components when test data and experience may be lacking with newer materials?


## ONE FACTOR AT A TIME (OFAT) SCREENING

- Examples of Applications:
  - Additive responses in various base oils
  - Compare single additive performance at different concentrations
  - Modify existing formulation by addition to improve performance
  - Compare a variety of additives individually

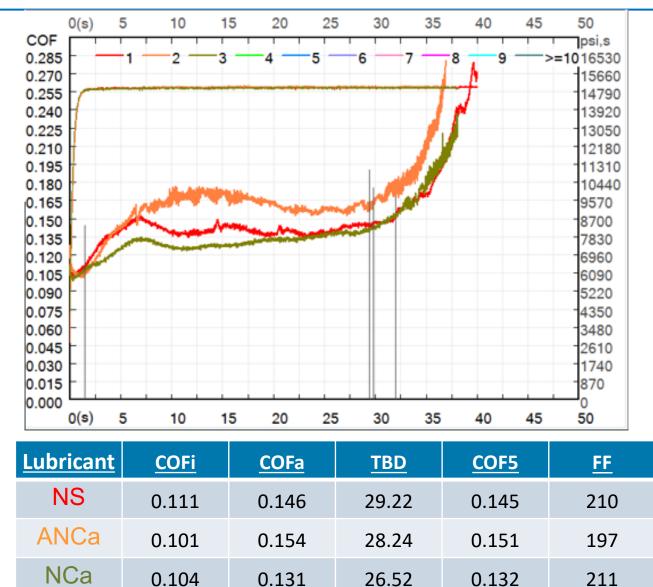
#### SS 304 OFAT EXAMPLE: TEST INDIVIDUAL ADDITIVES AT A TYPICAL USE CONCENTRATION

| Code | Description                                        | %(w/w) |
|------|----------------------------------------------------|--------|
| BO   | 38cSt @ 40°C Naphthenic blend                      | 100.0  |
| SO   | 37% Sulfurized Olefin, 35% Active                  | 10.0   |
| PEL  | C-18 Phosphate Ester AV=150, 4%P, EO               | 4.0    |
| VO   | Vegetable oil: 22% Erucic acid                     | 13.4   |
| EHS  | 2-ethylhexyl stearate                              | 13.4   |
| SE   | Sulfurized triglyceride/olefin 26%S, 15%<br>Active | 10.0   |
| PEH  | Amine isotridecyl phosphate                        | 4.0    |
| Poly | Polymeric Ester                                    | 6.7    |
| FA   | Polymerized fatty acid, AV=50                      | 10.0   |
| ND   | Nanocarbon dispersion                              | 6.7    |
| CaS  | 400TBN Calcium Sulfonate                           | 6.7    |

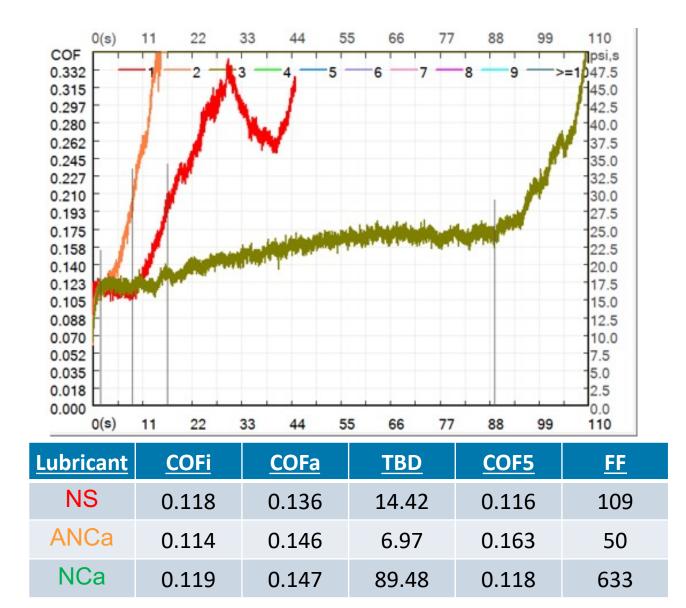
## OFAT INDIVIDUAL INGREDIENT TBD RANKING (SS304/D2 – 2KSI)



## OFAT GENERAL OBSERVATIONS


- Advantages:
  - Lowest testing resource for focused investigations
  - Additive incompatibility does not affect the whole test matrix
  - May use with an existing formulation to select additives for further study
- Limitations:
  - Conclusions limited to the single factor at the level tested
  - No information on interactions

- Goal: Identify additives synergistic with 37% active sulfurized olefin on AISI 1008 CRS (15ksi) and SS 304 (3ksi) using TCT
- Process:
  - Test 10% solution of sulfurized olefin
  - Test 5% solutions of additives
  - Test the combination: 10% sulfurized olefin + 5% additive


#### BINARY SCREENING FOR SYNERGIES EXAMPLE: BLENDS TO 38CST @ 40°C IN NAPHTHENIC BASE OILS

| Ingredient | Use Level (%) | Description                                                        |
|------------|---------------|--------------------------------------------------------------------|
| S          | 10            | 37% Sulfurized Olefin – 35% Active                                 |
| EA         | 5             | Unsaturated Ester (AV=100)                                         |
| PE         | 5             | Ethoxylated Phosphate Ester:<br>C-18, AV=150mgKOH/g, 4% Phosphorus |
| PI         | 5             | Phosphite:<br>AV<5mgKOH/g, 5.4% Phosphorus                         |
| Са         | 5             | Calcium Sulfonate:<br>400 TBN, 15.5% Calcium                       |

#### AISI 1008 CRS: SULFURIZED OLEFIN(10%) / CALCIUM SULFONATE(5%): COF VS TIME GRAPHS: 15KSI



#### SS 304: SULFURIZED OLEFIN / CALCIUM SULFONATE: COF VS TIME GRAPHS:2KSI



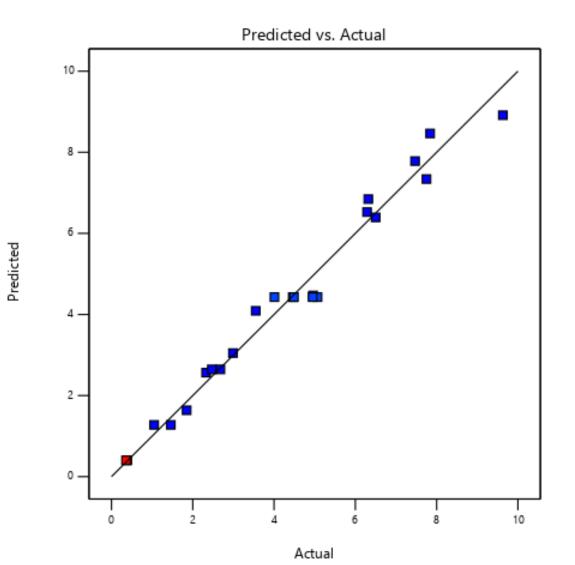
#### BINARY SCREENING FOR SYNERGIES AND ANTAGONISMS OBSERVATIONS

- Advantages:
  - Identifies synergies effectively
  - Additive incompatibility does not affect the whole study
- Limitations:
  - Conclusions limited to the additive concentrations tested
  - No information on varying proportions of additive pairs

#### SCREENING DOE ADDITIVES AND CONSTRAINTS (SAME ADDITIVES AS OFAT EXCEPT CAS SS304 2KSI)

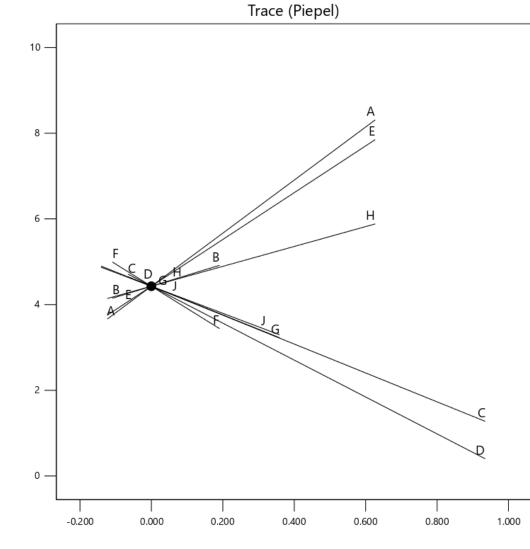
|        |                                                 | Constr   | aints    |
|--------|-------------------------------------------------|----------|----------|
| Code   | Description                                     | Lower(%) | Upper(%) |
| Base   | 38cSt @ 40°C Naphthenic blend                   | 80       | 80       |
| A:SO   | 37% Sulfurized Olefin, 35% Active               | 0        | 15       |
| B:PEL  | C-18 Phosphate Ester AV=150, 4%P, EO            | 0        | 6        |
| C:VO   | Vegetable oil: 22% Erucic acid                  | 0        | 20       |
| D:EHS  | 2-ethylhexyl stearate                           | 0        | 20       |
| E:SE   | Sulfurized triglyceride/olefin 26%S, 15% Active | 0        | 15       |
| F:PEH  | Amine isostricecyl phosphate                    | 0        | 6        |
| G:Poly | Polymeric Ester                                 | 0        | 10       |
| H:FA   | Polymerized fatty acid, AV=50                   | 0        | 15       |
| J:ND   | Nanocarbon dispersion                           | 0        | 10       |
|        | Total A+B+C+D+E+F+G+H+J                         | 20       | )        |

#### SCREENING 9 COMPONENT DOE BLENDS: TCT TEST: SS304 2KSI


| Ingredient | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13-14  | 15     | 16     | 17     | 18     | 19-23  |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Base Oil   | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  | 80.00  |
| A:SO       | 0.00   | 15.00  | 0.00   | 0.00   | 0.00   | 14.00  | 0.00   | 0.00   | 14.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 2.46   |
| B:PEL      | 0.00   | 0.00   | 6.00   | 0.00   | 0.00   | 6.00   | 5.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 6.00   | 0.00   | 6.00   | 0.00   | 0.00   | 2.18   |
| C:VO       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 20.00  | 0.00   | 0.00   | 0.00   | 4.00   | 0.00   | 20.00  | 1.30   |
| D:EHS      | 0.00   | 0.00   | 0.00   | 0.00   | 20.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 20.00  | 0.00   | 1.30   |
| E:SE       | 0.00   | 0.00   | 14.00  | 4.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 15.00  | 0.00   | 14.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 2.46   |
| F:PEH      | 6.00   | 0.00   | 0.00   | 6.00   | 0.00   | 0.00   | 0.00   | 0.00   | 6.00   | 0.00   | 0.00   | 6.00   | 6.00   | 0.00   | 0.00   | 0.00   | 0.00   | 2.18   |
| G:Poly     | 0.00   | 5.00   | 0.00   | 10.00  | 0.00   | 0.00   | 0.00   | 10.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 10.00  | 0.00   | 0.00   | 2.82   |
| H:FA       | 14.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 15.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 10.00  | 0.00   | 0.00   | 0.00   | 2.46   |
| J:ND       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 10.00  | 0.00   | 5.00   | 0.00   | 0.00   | 8.00   | 10.00  | 0.00   | 0.00   | 0.00   | 2.82   |
| Total      | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |

- Design includes some combinations of additives (2-3)
- Two additives are tested individually (VO, EHS)
- Includes a reference blend (19-23) includes all factors (additives)
  - Replicates are included to estimate pure error

## SCREENING MIXTURE DOE ANOVA AND LINEAR MODEL


| Source                        | Sum of<br>Squares | df | Mean<br>Square | F-value | p-value  |                 |
|-------------------------------|-------------------|----|----------------|---------|----------|-----------------|
| Model                         | 141.82            | 8  | 17.73          | 79.31   | < 0.0001 | significant     |
| <sup>(1)</sup> Linear Mixture | 141.82            | 8  | 17.73          | 79.31   | < 0.0001 |                 |
| Residual                      | 3.13              | 14 | 0.2235         |         |          |                 |
| Lack of Fit                   | 2.30              | 7  | 0.3285         | 2.77    | 0.1010   | not significant |
| Pure Error                    | 0.8297            | 7  | 0.1185         |         |          |                 |
| Cor Total                     | 144.94            | 22 |                |         |          |                 |

| TBD       | =      |
|-----------|--------|
| +0.492973 | * SO   |
| +0.335669 | * PEL  |
| +0.063830 | * VO   |
| +0.020115 | * EHS  |
| +0.460737 | * SE   |
| -0.009307 | * PEH  |
| +0.077783 | * Poly |
| +0.323162 | * FA   |
| +0.085914 | * ND   |



### SCREENING MIXTURE DOE TCT TBD TRACE PLOT: SS304 2KSI

| Component | <b>Reference Blend %</b> |  |
|-----------|--------------------------|--|
| Base Oil  | 80.00                    |  |
| A:SO      | 2.46                     |  |
| B:PEL     | 2.18                     |  |
| C:VO      | 1.30                     |  |
| D:EHS     | 1.30                     |  |
| E:SE      | 2.46                     |  |
| F:PEH     | 2.18                     |  |
| G:Poly    | 2.82                     |  |
| H:FA      | 2.46                     |  |
| J:ND      | 2.82                     |  |
| Total     | 100.00                   |  |

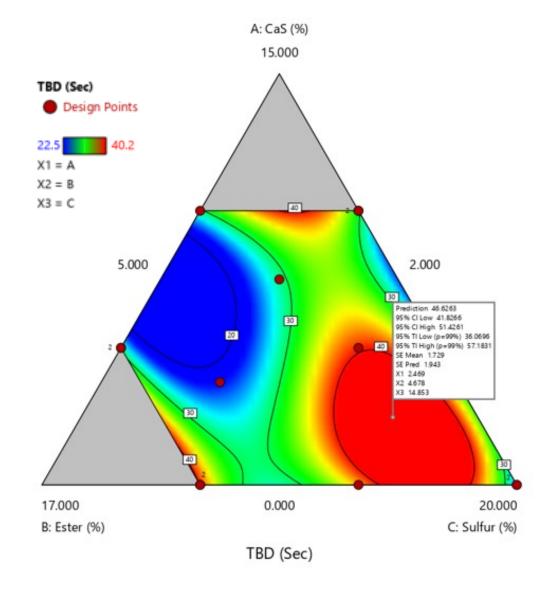


| Component | Gradient (Real) |
|-----------|-----------------|
| A:SO      | 6.19            |
| E:SE      | 5.46            |
| B:PEL     | 2.56            |
| H:FA      | 2.32            |
| J:ND      | -3.15           |
| G:Poly    | -3.34           |
| C:VO      | -3.37           |
| D:EHS     | -4.31           |
| F:PEH     | -5.18           |

Deviation from Reference Blend (L\_Pseudo Units)

## THREE COMPONENT MIXTURE DOE EXAMPLE

# Goal: Maximize TCT time until lubricant film breakdown (TBD) with AISI 1008 CRS @ 25ksi


## **Design Space**

| <u>Run #</u> | <u>Ca</u> | Ester | <u>S pkg</u> |
|--------------|-----------|-------|--------------|
| 1            | 0         | 2     | 20           |
| 2            | 5         | 12    | 5            |
| 3            | 10        | 2     | 10           |
| 4            | 0         | 12    | 10           |
| 5            | 10        | 7     | 5            |
| 6            | 5         | 4.5   | 12.5         |
| 7            | 0         | 7     | 15           |
| 8            | 3.75      | 9.5   | 8.75         |
| 9            | 7.5       | 5.75  | 8.75         |
| 10           | 5         | 2     | 15           |
| 11           | 0         | 12    | 10           |
| 12           | 5         | 12    | 5            |
| 13           | 0         | 2     | 20           |
| 14           | 10        | 2     | 10           |

| Component                                          | Low Limit |   | Constraint |   | High Limit |
|----------------------------------------------------|-----------|---|------------|---|------------|
| 300 TBN Calcium Sulfonate                          | 0.00      | ≤ | A: CaS     | ≤ | 10.00      |
| C-18 Glycerol Ester                                | 2.00      | ≤ | B: Ester   | ≤ | 12.00      |
| Sulfurized Olefins (21.8% Total<br>S/ 4.8% Active) | 5.00      | ≤ | C: Sulfur  | ≤ | 20.00      |
|                                                    |           |   | A+B+C      | = | 22.00      |

## TIME UNTIL BREAKDOWN (TBD) CONTOUR GRAPH: 1008 CRS

- Optimum Blend region to maximize TCT TBD
- A:CaS = 2.5%
- B:Ester = 4.6%
- C:Sulfur = 14.9%



## THREE COMPONENT DOE OBSERVATIONS

- Advantages:
  - Efficient use of testing resources : Models all of design space
  - Identifies "sweet spots" and regions to avoid in design space
  - Identifies and models additive interactions
  - Can be used to optimize multiple responses (TBD, COFavg, and cost for example)
- Limitations (Planning considerations):
  - Not a practical screening tool (min. 55 tests required for 9 additives)
  - Additives must be compatible across all of design space

## SCREENING STRATEGY SUMMARY: 9 ADDITIVES

| Screening Strategy                            | <b>Tests Required for 9 Additive Screen</b> | Conclusion(s)                                                                                                                                        |
|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFAT Individual Adds or Add to<br>Product     | 10 (9 + Base)                               | Efficient for specifically defined data requirement(s)                                                                                               |
| 2-factor Synergy with Single<br>Additive (SO) | 19 (9 Individual + 9 Combinations + SO)     | Gives specific compatiblilty ranking with a single additive                                                                                          |
| DOE Screening                                 | 23                                          | Efficient: Information about<br>levels and general compatibility<br>of additives. Linear models only.<br>Non-statistical observations also<br>useful |
| 9 Component full DOE                          | 55                                          | Deeper understanding of levels<br>and interactions: For reference                                                                                    |
| 3 Component full DOE                          | 14-20                                       | For reference                                                                                                                                        |

#### SUMMARY

- Complete, cost-effective, CP replacement will be extremely challenging for certain critical applications and materials
- Careful selection and validation of tribotests are necessary
- Several screening techniques are available
  - Basestocks
  - Additives
- Mixture DOE is useful for optimizing selected additive levels

#### ACKNOWLEDGEMENTS

# THANK YOU!

ILMA MWF Conference Organizers and Sponsors

Sea-Land Chemical Co. / SLC Testing Services

## Questions?

Ted McClure Sea-Land Chemical Co / SLC Testing Services 18013 Cleveland Parkway Cleveland, OH 44135 (440) 871-7887 ted.mcclure@sealandchem.com